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2 Chapter 1 The Drude Theory of Merals

Metals occupy a rather special position in the study of solids. sharing a variety of
striking properties that other solids {such as quartz, sulfur, or common salt) lack.
They are excelient conductors of heat and electricity. are ductile and malleable, and
display a striking luster on freshly exposed surfaces. The challenge of accounting for
these metallic features gave the starting impetus to the modern theory of solids.

Although the majority of commonly encountered solids are nonmetallic. metals
have continued to play a prominent role in the theory of solids from the fate nineteenth
century to the present day. Indeed, the metallic state has proved to be one of the great
fundamental states of matter. The elements. for example. definitely favor the metallic
state: over two thirds are metals. Even to understand nonmetals one must also
understand metals, for in explaining why copper conducts so well. one begins to
learn why common salt does not.

During the last hundred years physicists have tried to construct simple models of
the metallic state that account in a qualitauve. and even quantitative, way for the
characteristic metallic properties. In the course of this search brilliant successes have
appeared hand in hand with apparently hopeless failures. time and again. Even the
earlicst models, though strikingly wrong in some respects. remain. when properly
used. of immense value to solid state physicists today.

In this chapter we shall examine the theory of metallic conduction put forth by
P. Drude! at the turn of the century. The successes of the Drude model were con-
siderable. and it is still used today as a quick practical way to form simple pictures
and rough estimates of propertics whose more precise comprehension may require
analysis of considerable complexity. The failures of the Drude model to account for
some experiments, and the conceptual puzzies it raised, defincd the problems with
which the theory of metals was to grapple over the next quarter century. These found
their resolution only in the rich and subtle structure of the quantum theory of solids.

BASIC ASSUMPTIONS OF THE DRUDE MODEL

J. ). Thomson's discovery of the electron in 1897 had a vast and immediate impact
on theories of the structure of matter, and suggested an obvious mechanism for con-
duction in metals. Three years after Thomson's discovery Drude constructed his
theory of electrical and thermal conduction by applying the highly successful kinetic
theory of gases to a metal, considered as a gas of electrons.

In its simplest form kinetic theory treats the molecules of a gas as identical solid
spheres. which move in straight lines until they collide with one another.? The time
taken up by a single collision is assumed to be negligible. and. except for the forces
coming momentarily into play during each collision, no other forces are assumed to
act between the particles.

Although there 1s only one kind of particle present in the simplest gases. in a metal
there must be at least two, for the electrons are negatively charged. vet the metal is
electrically neutral. Drude assumed that the compensating positive charge was at-

' Annalen der Physik 1. 566 and 3, 369 (1900).
* Or with the walls of the vessel containing them. a possibility generally ignored in discussing metals
unless one is inlerested in very fine wires. thin sheets, or effects al the surface,
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Figure 1.1
(a) Schematic picture of an isoliated atom (not to scale). (b) In a metal the nucleus and ion
core retain their configuration in the free atom., but the valence electrons lcave the atom o
form the clectron gas.

tached to much heavier particles, which he considered to be immobile. At his time,
however, there was no precise notion of the origin of the light, mobile electrons and
the heavier, immobile, positively charged particles. The solution 1o this problem is
one of the fundamental achievements of the modern quantum theory of solids. In
this discussion of the Drude model. however, we shall simply assume (and in many
metals this assumption can be justified) that when atoms of a metallic element are
brought together to form a metal, the valence electrons become detached and wander
freely through the metal, while the metallic ions remain intact and play the role of the
immobile positive particles in Drude’s theory. This model is indicated schematically
in Figure 1.1. A single isolated atom of the metallic element has a nucleus of charge
eZ,. where Z, is the atomic number and e is the magnitude of the electronic charge3:
¢ = 4.80 x 1077 electrostatic units (csu) = 1.60 x 10~ '® coulombs. Surrounding
the nucleus are Z, electrons of total charge —eZ,. A few of these, Z, are the relatively
weakly bound valence electrons. The remaining Z, — Z clectrons are relatively tightly
bound to the nucleus, play much less of a role in chemical reactions, and are known
as the core electrons. When these isolated atoms condense to form a metal, the core
clectrons remain bound to the nucleus to form the metallic ion, but the valence
electrons are allowed to wander far away from their parent atoms. In the metallic
context they are called conduction electrons.*

¥ We shall always 1ake ¢ Lo be a positive number.

4 When. as in the Drude model. the core elecirons play a passive role and the ion acts as an indivisible
inerl enlily. one ofien refers 10 the conduction clecirons simply as ““the electrons,” saving the full term for
times when the distinclion belween conduclion and core elecirons is 1o be emphasized.
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Drude applied kinetic theory to this “gas” of conduction electrons of mass m, which
(in contrast to the molecules of an ordinary gas) move against a background of heavy
immobile ions. The density of the electron gas can be calculated as follows:

A metallic element contains 0.6022 x 10?* atoms per mole (Avogadro’s number)
and p,,/A moles per cm?, where p,, is the mass density (in grams per cubic centimeter)
and A is the atomic mass of the element. Since each atom contributes Z electrons,
the number of electrons per cubic centimeter, n = N/V, is

n = 06022 x 102* (1.1)

Zpy,
1
Table 1.1 shows the conduction electron densities for some selected metals.
They are typically of order 10?2 conduction electrons per cubic centimeter, varying
from 0.91 x 10?2 for cesium up to 24.7 x 10*? for beryllium.® Also listed in
Table 1.1 is a widely used measure of the electronic density. r,. defined as the
radius of a sphere whose volume is equal to the volume per conduction electron.

Thus
V 1 4mrd 3.\
N=n= 3" “=(4;;;;) - (1.2)

Table 1.1 lists r; both in angstroms (1078 cm) and in units of the Bohr radius a, =
h?*/me* = 0.529 x 107 % cm; the latter length, being a measure of the radius of a
hydrogen atom in its ground state, is often used as a scale for measuring atomic
distances. Note that r./ag is between 2 and 3 in most cases. although it ranges between
3 and 6 in the alkali metals (and can be as large as 10 in some metallic compounds).

These densities are typically a thousand times greater than those of a classical gas
at normal temperatures and pressures. In spite of this and in spite of the strong
electron-electron and electron-ion electromagnetic interactions, the Drude model
boldly treats the dense metallic electron gas by the methods of the kinetic theory of
a neutral dilute gas, with only slight modifications. The basic assumptions are these:

1. Between collisions the interaction of a given electron, both with the others
and with the ions, is neglected. Thus in the absence of externally applied electro-
magnetic fields each electron is taken to move uniformly in a straight line. In the
presence of externally applied fields each electron is taken to move as determined
by Newton’s laws of motion in the presence of those external fields, but neglecting
the additional complicated fields produced by the other electrons and ions.® The
neglect of electron-electron interactions between collisions is known as the indepen-
dent electron approximation. The corresponding neglect of electron-ion interactions
is known as the free electron approximation. We shall find in subsequent chapters that

5 This is the range for metallic elements under normal conditions. Higher densities can be attained
by application of pressure (which tends to favor the metallic state). Lower densities are found in com-
pounds.

5 Strictly speaking, the electron-ion interaction is not entrely i1znored, for the Drude model im-
plicitly assumes that the electrons are confined to the interior of the metal. Evidently this confinement is
brought about by their attraction to the positively charged ions. Gross effects of the electron-ion and
electron-electron interaction like this arc often taken into account by adding to the external fields a suitably
defined internal field representing the average effect of the electron-electron and electron-ion interactions.
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Table 1.1
FREE ELECTRON DENSITIES OF SELECTED METALLIC ELE-
MENTS*

ELEMENT Z n(10*2/cm?) rdA) rJag
Li (78 K) 1 4.70 1.72 3.25
Na (5 K) 1 265 208 393
K (5K) 1 1.40 2.57 486
Rb (5K) 1 115 275 520
Cs (5K) 1 091 298 5.62
Cu 1 8.47 1.41 267
Ag 1 5.86 1.60 3.02
Au 1 590 1.59 3.01
Be 2 247 099 187
Mg 2. 8.61 141 2.66
Ca 2 4.61 1.73 3.27
Sr 2 3.55 1.89 357
Ba 2 315 1.96 371
Nb 1 5.56 1.63 3.07
Fe 2 17.0 112 212
Mn () 2 16.5 1.13 2.14
Zn 2 132 122 230

- 2 927 1.37 2.59
Hg (78 K) 2 8.65 1.40 265
Al 3 18.1 1.10 207
Ga 3 154 1.16 2.19
In 3 11.5 1.27 241
Tl 3 10.5 1.31 2.48
Sn 4 14.8 1.17 222
Pb 4 13.2 1.22 230
Bi 5 14.1 1.19 2.25
Sb 5 16.5 1.13 214

“ At room temperature (about 300 K) and atmospheric pressure, unless
otherwise noted. The radius r, of the free electron sphere is defined in Eq. (1.2).
We have arbitrarily selected one value of Z for those elements that display
more than one chemical valence. The Drude model gives no theoretical
basis for the choice. Values of n are based on data from R. W. G. Wyckoff,
Crystal Structures, 2nd ed., Interscience, New York, 1963.

although the independent electron approximation is in many contexts surprisingly
good, the free electron approximation must be abandoned if one is to arrive at even
a qualitative understanding of much of metallic behavior.

2. Collisions in the Drude model, as in kinetic theory, are instantancous events
that abruptly alter the velocity of an electron. Drude attributed them to the electrons
bouncing off the impenetrable ion cores (rather than to electron-electron collisions.
the analogue of the predominant collision mechanism in an ordinary gas). We shall
find later that electron-electron scattering is indeed one of the least important of the
several scattering mechanisms in a metal, except under unusual conditions. However,
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Figure 1.2
Trajectory of a conduction electron scattering off the
ions, according to the naive picture of Drude.

the simple mechanical picture (Figure 1.2) of an electron bumping along from ion to
ion is very far off the mark.” Fortunately, this does not matter for many purposes:
a qualitative (and often a quantitative) understanding of metallic conduction can
be achieved by simply assuming that there is some scattering mechanism, without
inquiring too closely into just what that mechanism might be. By appealing, in our
analysis. to only a few general effects of the collision process. we can avoid committing
ourselves to any specific picture of how electron scattering actually takes place. These
broad features are described in the following two assumptions.

3. We shall assume that an electron experiences a collision (i.e.. suffers an abrupt
change in its velocity) with a probability per unit time 1/7. We mean by this that the
probability of an electron undergoing a collision in any infinitesimal time interval of
length dt is just di/7. The time t is variously known as the relaxation time, the collision
time, or the mean free time, and it plays a fundamental role in the theory of metallic
conduction. It follows from this assumption that an electron picked at random at a
given moment will, on the average, travel for a time t before its next collision, and
will, on the average, have been traveling for a time t since its last collision.® In the
simplest applications of the Drude model the collision time 7 is taken to be inde-
pendent of an electron’s position and velocity. We shall see later that this turns out
to be a surprisingly good assumption for many (but by no means alil) applications.
4. Electrons are assumed to achieve thermal equilibrium with their surroundings
only through collisions.® These collisions are assumed to maintain local thermo-
dynamic equilibrium in a particularly simple way: immediately after each collision
an clectron is taken to emerge with a velocity that 1s not related to its velocity
just before the collision, but randomly directed and with a speed appropriate to the
temperature prevailing at the place where the collision occurred. Thus the hotter the
region in which a collision occurs, the faster a typical clectron will emerge from the
collision.

In the rest of this chapter we shall illustrate these notions through their most
important applications. noting the extent to which they succeed or fail to describe
the observed phenomena.

DC ELECTRICAL CONDUCTIVITY OF A METAL

According to Ohm's law, the current I flowing in a wire is proportional to the potential
drop V along the wire: ¥ = IR, where R, the resistance of the wire, depends on its

%

For some time people were led into difficult but irrelevant problems connected with the proper
aiming of an electron al an ion in each collision. So literal an interpretation of Figure 1.2 is strenuously
to be avoided.

& See Problem 1.

# Given the free and independent electron approximation, this is the only possible mechanism left.
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dimensions, but is independent of the size of the current or potential drop. The Drude
model accounts for this behavior and provides an estimate of the size of the resistance.

One generally eliminates the dependence of R on the shape of the wire by intro-
ducing a quantity characteristic only of the metal of which the wire is composed. The
resistivity p is defined to be the proportionality constant between the electric field
E at a point in the metal and the current density j that it induces'®:

E = pj. (1.3)

The current density j is a vector. parallel to the flow of charge, whose magnitude is
the amount of charge per unit time crossing a unit arca perpendicular to the flow.
Thus if a uniform current I flows through a wire of length L and cross-sectional area
A, the current density will be j = I, A. Since the potential drop along the wire will be
V = EL, Eq. (1.3) gives ¥V = IpL/4, and hence R = pL/A.

If n electrons per unit volume all move with velocity v, then the current density
they give rise to will be parallel to v. Furthermore, in a time dt the clectrons will
advance by a distance v dt in the direction of v, so that n(vdt)A electrons will cross
an area A perpendicular to the direction of flow. Since each electron carries a charge
—e. the charge crossing 4 in the ime dt will be —nerA dt, and hence the current
density is

j = —nev. (1.4)

At any point in a metal, electrons are always moving in a variety of directions
with a variety of thermal energies. The net current density is thus given by (1.4),
where v is the average electronic velocity. In the absence of an electric field, electrons
are as likely to be moving in any one direction as in any other, v averages to zero,
and, as expected, there is no net electric current density. In the presence of a ficld E,
however, there will be a mean electronic velocity directed opposite to the field (the
electronic charge being negative), which we can compute as foliows:

Consider a typical electron at time zero. Let ¢ be the time elapsed since its last
collision. Its velocity at time zero will be its velocity vo immediately after that collision
plus the additional velocity — ¢Et/m it has subsequently acquired. Since we assume
that an electron emerges from a collision in a random direction, there wiil be no
contribution from v, to the average electronic velocity, which must therefore be given
entirely by the average of — eEt/m. However, the average of t is the relaxation time
7. Therefore

¢Et
v -

2
e = 1= (”" t) E. (1.5)
m m

This result is usually stated in terms of the inverse of the resistivity, the conductivity
o= 1/p:

‘ j=oE; o=t (1.6)

10 Ingeneral, E and j need not be parallel. One then defines a resistivity tensor. See Chapters 12 and 13.
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This establishes the linear dependence of j on E and gives an estimate of the
conductivity ¢ in terms of quantities that are all known except for the relaxation
time . We may therefore use (1.6) and the observed resistivities to estimate the size
of the relaxation time:

m

T= (1.7)

pne*’

Table 1.2 gives the resistivities of several representative metals at several temper-
atures. Note the strong temperature dependence. At room temperature the resistivity
is roughly linear in T, but it falls away much more steeply as low temperatures are

Table 1.2
ELECTRICAL RESISTIVITIES OF SELECTED ELEMENTS®

ELEMENT 77K 273K 373K (p/T)73
(o/T)rr3 x

Li 1.04 8.55 124 1.06
Na 0.8 42 Melted
K 1.38 6.1 Melted
Rb 22 11.0 Melted
Cs 45 18.8 Melted
Cu 0.2 1.56 224 1.05
Ag 03 1.51 2.13 1.03
Au 0.5 2.04 2.84 1.02
Be 28 5.3 1.39
Mg 0.62 39 5.6 1.05
Ca 343 5.0 1.07
Sr 7 23
Ba 17 60
Nb 30 15.2 19.2 0.92
Fe 0.66 89 14.7 1.21
Zn 11 55 7.8 1.04
Cd 1.6 68
Hg 58 Melted Melted
Al 0.3 2.45 3.55 1.06
Ga 275 13.6 Melted
In 1.8 8.0 12.1 111
T 37 15 2.8 1.11
Sn 2.1 10.6 158 1.09
Pb 47 19.0 21.0 1.04
Bi 35 107 156 1.07
Sb 8 39 59 111

“ Resistivities in microhm centimeters are given at 77 K (the boiling point of liquid
nitrogen at atmospheric pressure), 273 K, and 373 K. The last column gives the
ratio of ;T at 373 K and 273 K to display the approximate linear temperature
dependence of the resistivity near room temperature.

Source: G. W. C. Kaye and T. H. Laby, Table of Physical and Chemical Constants,
Longmans Green, London, 1966.
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reached. Room temperature resistivities are typically of the order of microhm centi-
meters (pohm-cm) or. in atomic units, of order 107 '® statohm-cm.!! If p, is the
resistivity in microhm centimeters, then a convenient way of ex pressing the relaxation

time implied by (1.7) 1s
9 3
T= (Q:_Z_) (r—) x 107! sec. (1.8)
Pu g

Relaxation times calculated from (1.8) and the resistivities in Table 1.2 are displayed
in Table 1.3. Note that at room temperatures 7 is typically 10~ % to 10~ '3 sec. In
considering whether this is a reasonable number. it is more instructive to contemplate
the mean free path, £ = v,7, where v, is the average electronic speed. The length ¢
measures the average distance an electron travels between collisions. In Drude’s time
it was natural to estimate v, from classical equipartition of energy: ymvg? = 3k, T,
Using the known electronic mass, we find a vy of order 107 cmy/sec at room tem-
perature, and hence a mean free path of 1 to 10 A. Since this distance is comparable
to the interatomic spacing, the result is quite consistent with Drude’s original view
that collisions are due to the electron bumping into the large heavy ions.

However, we shall see in Chapter 2 that this classical estimate of Up 1s an order
of magnitude too small at room temperatures. Furthermore, at the lowest tem pera-
tures in Table 1.3, 7 is an order of magnitude larger than at room temperature, while
(as we shall see in Chapter 2) vy is actually temperature-independent. This can raise
the low-temperature mean free path to 10® or more angstroms, about a thousand
times the spacing between 1ons. Today, by working at sufficiently low temperatures
with carefully prepared samples, mean free paths of the order of centimeters (i.e., 108
interatomic spacings) can be achieved. This is strong evidence that the electrons do
not simply bump off the ions, as Drude supposed.

Fortunately. however, we may continue to calculate with the Drude model without
any precise understanding of the cause of collisions. In the absence of a theory of the
collision time it becomes important to find predictions of the Drude model that are
independent of the value of the relaxation time 7. As it happens, there are several
such -independent quantities, which even today remain of fundamental interest, for
in many respects the precise quantitative treatment of the relaxation time remains
the weakest link in modern treatments of metallic conductivity. As a result, r-inde-
pendent quantities are highly valued, for they often yield considerably more reliable
information.

Two cases of particular interest are the calculation of the electrical conductivity
when a spatially uniform static magnetic field is present, and when the electric field

»

""" To convert resistivities from microhm centimeters to statohm centimeters note that a resistivity of
1 pohm-cm yields an electric field of 107 ° volt cm in the presence of a current of 1 amp cm?. Since | amp
is3 x 10°esu sec, and | volt 1s v45 statvolt, a resistivity of 1 gohm-cm yields a field of 1 statvolt ‘'em when
the current density is 300 x 10° x 3 x 107 esu-cm ™ *-sec™ !. The statohm-centimeter is the electrostatic
unit of resistivity. and therefore gives 1 statvolt em with a current density of only 1 esu-cm ™ 2-sec ™' Thus
I johm-cm is equivalent to § x 107" statohm-cm. To avoid using the statohm-centimeler. one may
evaluate (1.7) taking p in ohm meters. m in kilograms. » in eleclrons per cubic meter. and e in coulombs.
(Note: The most important formulas. constants. and comversion factors from Chapters | and 2 are sum-
marized in Appendix A.)
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Table 1.3
DRUDE RELAXATION TIMES IN UNITS OF 10 4 SECOND~
ELEMENT 77K 273 K 373K
Li 13 0.88 061
Na 17 32
K 18 4.1
Rb 14 28
Cs 8.6 21
Cu 21 2.7 1.9
Ag 20 4.0 28
Au 12 3.0 21
Be 0.51 0.27
Mg 6.7 1.1 0.74
Ca 22 1.5
Sr 1.4 0.44
Ba 0.66 0.19
Nb 21 0.42 033
Fe 32 0.24 0.14
Zn 24 0.49 0.34
Cd 24 0.56
Hg 0.71
Al 6.5 0.80 0.55
Ga 0.84 017
In 1.7 0.38 0.25
T 091 0.22 0.15
Sn 1.1 0.23 0.15
Pb 0.57 014 0.099
Bi 0.072 0.023 0.016

Sb 0.27 0.055 0.036

“ Relaxation times are calculated from the data in Tables 1.1 and 1.2,
and Eq. (1.8). The slight temperature dependence of n is ignored.

is spatially uniform but time-dependent. Both of these cases are most simply dealt
with by the following observation:

At any time t the average electronic velocity v is just p(f)/m, where p is the total
momentum per electron. Hence the current density is

_ eplt)

m

—
I

(1.9)

Given that the momentum per electron is p(f) at time ¢, let us calculate the momentum
per electron p(t + dr) an infinitesimal time dt later. An electron taken at random at
time ¢ will have a collision before time t + dt, with probability dt/z, and will therefore
survive to time t + dr without suffering a collision with probability 1 — dt/z. If it
experiences no collision, however, it simply evolves under the influence of the force
f(t) (due to the spatially uniform electric and/or magnetic fields) and will therefore
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acquire an additional momentum'? fit) dt — O (dt)®. The contribution of all those
electrons that do not collide between t and ¢ + dt to the momentum per electron at
timet + dtisthe fraction(l — dt/z)they constitute of all electrons, times their average
momentum per electron, p(t) + f(t)dt + O(d1)*,

Thus neglecting for the moment the contribution to p(t + dt) from those electrons
that do undergo a collision in the time between t and ¢ + dt, we have!?

plt + dit) = (l - d?‘) [prn + fle)de + O(d:)’]

T

= plt) - (d_{)p”} + f(1)dt + O(dr)". (1.10)

The correction to (1.10) due to those electrons that have had a collision in the
interval ttot + dt is only of the order of (dt)*. To see this, first note that such electrons
constitute a fraction dt/t of the total number of electrons. Furthermore, since the
electronic velocity (and momentum) is randomly directed immediately after a col-
lision, each such electron will contribute to the average momentum p(t + ) only
to the extent that it has acquired momentum from the force f since its last collision.
Such momentum 1s acquired over a time no longer than dr. and 1s therefore of order
f(r)dt. Thus the correction to (1.10) is of order (di/'t)f(t)dt. and does not affect the
terms of linear order in dr. We may therefore write:

dt 2
p(t + dr) — p(t) = — (—T-)plr) + f(f)dt + O(dr). (1.11)
where the contribution of all electrons to p{t + dt) is accounted for. Dividing this

by dt and taking the limit as dt — 0, we find
dpir) _ pln)

dr 1

+ (). (1.12)

This simply states that the effect of individual electron collisions is to introduce a
frictional damping term into the equation of motion for the momentum per electron.
We now apply (1.12) to several cases of interest.

HALL EFFECT AND MAGNETORESISTANCE

In 1879 E. H. Hall tried to determine whether the force experienced by a current
carrying wire in a magnetic field was exerted on the whole wire or only upon (what
we would now call) the moving electrons in the wire. He suspected 1t was the latter,
and his experiment was based on the argument that “if the current of electricity in a
fixed conductor is itself attracted by a magnet, the current should be drawn to one
side of the wire, and therefore the resistance experienced should be increased.”'* His

12 By O{dr)* we mean a term of the order of (dr)*.

13 If the force on the electrons is not the same for every electron, (1.10) will remain valid provided
that we interpret f as the average force per electron.

4 Am. J. Marh. 2, 287 (1879).
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eflorts to detect this extra resistance were unsuccessful,!® but Hall did not regard this
as conclusive: “The magnet may tend to deflect the current without being able to do
so. It is evident that in this case there would exist a state of stress in the conductor,
the electricity pressing, as it were, toward one side of the wire.” This state of stress
should appear as a transverse voltage (known today as the Hall voltage), which Hall
was able to observe.

Hall’s experiment is depicted in Figure 1.3. An electric field E, is applied to a wire
extending in the x-direction and a current density j, flows in the wire. In addition, a
magnetic field H points in the positive z-direction. As a result the Lorentz force!®

- Sv x H (1.13)

acts to deflect electrons in the negative y-direction (an electron’s drift velocity is
opposite to the current flow). However the electrons cannot move very far in the
y-direction before running up against the sides of the wire. As they accumulate there,
an clectric field builds up in the y-direction that opposes their motion and their
further accumulation. In equilibrium this transverse field (or Hall field) E, will balance
the Lorentz force, and current will flow only in the x-direction.

L

-evX H
++++++|++++++++

/Ey .

N Ix

Figure 1.3
Schematic view of Hall's experiment.

There are two quantities of interest. One is the ratio of the field along the wire
E, to the current density j,.
E,
plH) = =, (1.14)
This 1s the magnetoresistance,’” which Hall found to be field-independent. The other
is the size of the transverse field E,. Since it balances the Lorentz force, one might
expect it to be proportional both to the applied field H and to the current along the

'*  The increase in resistance (known as the magnetoresistance) does occur. as we shall see in Chapters

12 and 13. The Drude model, however, predicts Hall's null result.

' When dealing with nonmagnetic (or weakly magnetic) materials, we shall always call the field H,
the difference between B and H being extremely small.

" More precisely. 1t is the transverse magnetoresistance. There is also a longitudinal magneto-
resistance. measured with the magnetic field parallel to the current.
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wire j,.. One therefore defines a quantity known as the Hall coefficient by

i

Ry = J_j} (1.15)
Note that since the Hall field is in the negative y-direction (Figure 1.3), Ry should
be negative. If, on the other hand, the charge carriers were positive, then the sign of
their x-velocity would be reversed, and the Lorentz force would therefore be un-
changed. As a consequence the Hall field would be opposite to the direction it has for
negatively charged carriers. This is of great importance, for it means that a measure-
ment of the Hall field determines the sign of the charge carriers. Hall’s original data
agreed with the sign of the electronic charge later determined by Thomson. One of
the remarkable aspects of the Hall effect, however, is that in some metals the Hall
coefficient is positive, suggesting that the carriers have a charge opposite to that of
the electron. This is another mystery whose solution had to await the full quantum
theory of solids. In this chapter we shall consider only the simple Drude model
analysis, which though incapable of accounting for positive Hall coefficients, is often

in fairly good agreement with experiment.
To calculate the Hall coefficient and magnetoresistance we first find the current
densities j, and j, in the presence of an electric field with arbitrary components E,
and E,, and in the presence of a magnetic field H along the z-axis. The (position

independent) force acting on each electron is f = —e(E + v x H/c), and therefore
Eq. (1.12) for the momentum per electron becomes'®
dj
o 8 -—e(E +£xﬂ)-"-. (1.16)
de me T

In the steady state the current is independent of time, and therefore p, and p, will
satisfy
Px

0= —eE, — wp, ——, (1.17)
T

0= —eE, + awp; —&,
T

where
el
me’

w, =

(1.18)

We multiply these equations by —net/m and introduce the current density com-
ponents through (1.4) to find

ooEx = 01, + i,

ook, = —cjx + Jjy, (1.19)

where gy is just the Drude model DC conductivity in the absence of a magnetic
field, given by (1.6).

18 Note that the Lorentz force is not the same for each electron since it depends on the electronic
velocity ¥. Therefore the force fin (1.12) is to be taken as the average force per electron (see Footnote 13).
Because, however, the force depends on the electron on which it acts only through a term linear in the
electron’s velocity, the average force is obtained simply by replacing that velocity by the average velocity,
pim.
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The Hall field E; is determined by the requirement that there be no transverse
current j,. Setting j, to zero in the second equation of (1.19) we find that

(T . HY .
El' N ((U t)}x = (_)}x' (1-20)
Ty nec

Therefore the Hall coefficient (1.13) is

R, s (1.21)

hec

This is a very striking result, for it asserts that the Hall coeflicient depends on no
parameters of the metal except the density of carriers. Since we have already calcu-
lated nm assuming that the atomic valence electrons become the metallic conduction
electrons. a measurement of the Hall constant provides a direct test of the validity
of this assumption.

In trying to extract the electron density n from measured Hall coefficients one is
faced with the problem that, contrary to the prediction of (1.21), they generally do
depend on magnetic field. Furthermore, they depend on temperature and on the care
with which the sample has been prepared. This result i1s somewhat unexpected, since
the relaxation time 7. which can depend strongly on temperature and the condition
of the sample, does not appear in (1.21). However, at very low temperatures in very
pure. carefully prepared samples at very high fields, the measured Hall constants do
appear to approach a limiting value. The more elaborate theory of Chapters 12 and 13
predicts that for many (but not all) metals this limiting value is precisely the simple
Drude result (1.21).

Some Hall coefficients at high and moderate fields are listed in Table 1.4. Note
the occurrence of cases in which Ry is actually positive, apparently corresponding
to carriers with a positive charge. A striking example of observed field dependence
totally unexplained by Drude theory is shown in Figure 1.4.

The Drude result confirms Hall’s observation that the resistance does not depend
on field, for when j, = 0(as is the case in the steady state when the Hall field has been
established), the first equation of (1.19) reduces to j, = ooE,, the expected result for
the conductivity in zero magnetic field. However, more careful experiments on a
variety of metals have revealed that there is a magnetic field dependence to the re-
sistance, which can be quite dramatic in some cases. Here again the quantum theory
of solids is needed to explain why the Drude result applies in some metals and to
account for some truly extraordinary deviations from it in others.

Before leaving the subject of DC phenomena in a uniform magnetic field, we note
for future applications that the quantity et is an important, dimensionless measure
of the strength of a magnetic field. When o, is small, Eq. (1.19) gives j very nearly
parallel to E, as in the absence of a magnetic field. In general, however, j is at an
angle ¢ (known as the Hall angle) to E, where (1.19) gives tan ¢ = w,7. The quantity
. known as the cyclotron frequency, is simply the angular frequency of revolution'?

' In a uniform magnetic field theorbit of an electron is a spiral along the field whose projection in a

plane perpendicular to the field is a circle. The angular requency w, is determined by the condition that the
centripetal acceleration . *r be provided by the Lorentz force. (e, Mo r)H.
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Table 1.4
HALL COEFFICIENTS OF SELECTED ELEMENTS
IN MODERATE TO HIGH FIELDS®

METAL VALENCE — 1/Rynec
Li 1 0.8
Na 1 1.2
K 1 1.1
Rb 1 1.0
Cs 1 09
Cu 1 1.5
Ag I 1.3
Au 1 1:5
Be 2 -0.2
Mg 2 -04
In 3 -03
Al 3 —03

@ These are roughly the limiting values assumed by Ry as the
ficld becomes very large (of order 10° G), and the temperature
very low, in carefully prepared specimens. The dala are quoted
in the form ng/n, where nq is the density for which the Drude
form (1.21) agrees with the measured Rying = — 1/Ryec.
Evidently the alkali metals obey the Drude result reasonably
well, the noble metals (Cu, Ag, Au) less well, and the remaining
entries, not at all.

of a free electron in the magnetic field H. Thus @t will be small if electrons can
complete only a small part of a revolution between collisions, and large if they can
complete many revolutions. Alternatively, when .t is small the magnetic field de-
forms the electronic orbits only slightly, but when ot is comparable to unity or
larger, the effect of the magnetic field on the electronic orbits is quite drastic. A useful
numerical evaluation of the cyclotron frequency is

ve (10° hertz) = 2.80 x H (kilogauss), @ = 2nv,. (1.22)
Figure 1.4 ..-:.I.,I._..-..._____ —
The quantity ng/n = . -naq=-lfﬂg;m..‘
—1/Rynec, for aluminum, as % v
a function of wez. The free | A
electron density nisbasedon | \ : w1 =eHt/me
a nominal chemical valence = [ = 0_6! 0'_1 ljo l.r.l I ll‘;D IDIUO
$A% .

of 3. The high field value | A
suggests only one carrier per G
primitive cell, with a positive
charge. (From R. Liick, Phys. :

Stat. Sol. 18, 49 (1966).) | -033}-
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AC ELECTRICAL CONDUCTIVITY OF A METAL

To calculate the current induced in a metal by a time-dependent electric field, we
write the field in the form

E(1) = Re (E(w)e ™). (1.23)
The equation of motion (1.12) for the momentum per electron becomes
dp P
il DRSS M -] 1.24
dt T ¢ 20

We seek a steady-state solution of the form
p(t) = Re (plw)e ™). (1.25)

Substituting the complex p and E into (1.24), which must be satisfied by both the
real and imaginary parts of any complex solution, we find that p(w) must satisfy

—tamt) = —22 _ opm (1.26)
T
Since j = —nep/m, the current density is just

i) = Re (j(e)e ™",

i) = — neplw) _ (nez,fm)E[m}‘ 1.27)

m (1/7) — iw

One customarily writes this result as
j(©) = o(w)E(o), (1.28)

where o(w). known as the frequency-dependent (or AC) conductivity, 1s given by

2
L SR 2.4 (1.29)

olw) = "
1 —iwrt m

Note that this correctly reduces to the DC Drude result (1.6) at zero frequency.

The most important application of this result is to the propagation of electro-
magnetic radiation in a metal. It might appear that the assumptions we made to
derive (1.29) would render it inapplicable to this case, since (a) the E field in an electro-
magnetic wave is accompanied by a perpendicular magnetic field H of the same
magnitude,2® which we have not included in (1.24), and (b) the fields in an electro-
magnetic wave vary in space as well as time, whereas Eq. (1.12) was derived by
assuming a spatially uniform force.

The first complication can always be ignored. It leads to an additional term
—ep/me x H in (1.24), which is smaller than the term in E by a factor v/c, where
v is the magnitude of the mean electronic velocity. But even in a current as large as
1 amp/mm?, v = j/ne is only of order 0.1 cm/sec. Hence the term in the magnetic
field is typically 107? of the term in the electric field and can quite correctly be
ignored.

20 One of the more appealing features of CGS units.
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The second point raises more serious questions. Equation (1.12) was derived by
assuming that at any time the same force acts on each electron, which is not the case
if the electric field varies in space. Note, however, that the current density at point
r is entirely determined by what the electric field has done to each electron at r since
its last collision. This last collision, in the overwhelming majority of cases, takes place
no more than a few mean free paths away from r. Therefore if the field does not vary
appreciably over distances comparable to the electronic mean free path, we may
correctly calculate j(r, 1). the current density at point r, by taking the field everywhere
in space to be given by its value E(r, 1) at the point r. The result,

jir. ) = c(@)E(r, o). (1.30)

is therefore valid whenever the wavelength 1 of the field is large compared to the
electronic mean free path . This is ordinarily satisfied in a metal by visible light (whose
wavelength is of the order of 10* to 10* A). When it is not satisfied, one must resort
to so-called nonlocal theories, of greater complexity.

Assuming, then, that the wavelength is large compared to the mean free path, we
may proceed as follows: in the presence of a specified current density j we may write
Maxwell's equations as™’

1 ¢H
V'E=0;: V'H=0: VxE= —-:
el o
4. 1¢E
VxH="j4- (1.31)
(4 c Cl

We look for a solution with time dependence ¢~ ™", noting that in a metal we can
write j in terms of E via (1.28). We then find

e - .
vxlem:-V-E=-':"-VxH=.'2(.EE—-'§—’E). (1.32)
: -

or

; P 4ri
~VE=2 (1 + ﬂ) E (1.33)
¢ ©
This has the form of the usual wave equation,
. o*
—V°E = —-ewlE. (1.39)
(4

with a complex dielectric constant given by

4ric
elwy=1+ —-. (1.35)

L)

If we are at frequencies high enough to satisfy
ot » 1, (1.36)

' We are considering here an electromagnelic wave, in which the induced charge density p vanishes.
Below we examine the possibulity of oscillations in the charge density
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then, to a first approximation, Eqs. (1.35) and (1.29) give

do)=1—2. (1.37)
w~

where w,, known as the plasma frequency. is given b
P q V.S g y

N ir o?
@, = il (1.38)

m

When e is real and negative (& < ,) the solutions to (1.34) decay exponentially in
space; ie., no radiation can propagate. However. when € is positive (@ > @) the
solutions to (1.34) become oscillatory. radiation can propagate, and the metal should
become transparent. This conclusion is only valid. of course. if our high-frequency
assumption (1.36) is satisfied in the neighborhood of @ = «,,. If we express T in terms
of the resistivity through Eq. (1.8). then we can use the definition (1.38) of the plasma
frequency to compute that

R |
@t = 1.6 x 104 (= —1 (1.39)
Qg £y

Since the resistivity in microhm centimeters, p,. is of the order of unity or less. and
since r,d is in the range from 2 to 6. the high frequency condition (1.36) will be well
satisfied at the plasma frequency.

The alkali metals have. in fact, been observed to become transparent in the ultra-
violet. A numerical evaluation of (1.38) gives the frequency at which transparency
should set in as :

. -32 )
v, = 52')—*’ =114 x (r—) x 10'3 Hz (1.40)
T ao
or
. 32
iy =— =026 (i) x 10% A (1.41)
W ao

In Table 1.5 we list the threshold wavelengths calculated from (1.41), along with the

Table 1.5
OBSERVED AND THEORETICAL WAVELENGTHS BELOW
WHICH THE ALKALI METALS BECOME TRANSPARENT

ELEMENT THEORETICAL® / OBSERVED )
. (10% A) (103 &)
Li 15 2.0
Na 1) 21
K 28 3.1
Rb 3l 3.6

Cs 35 4.4

“ From Eq. (1.41).
Source: M. Born and E. Woll. Principles of Oprics, Pergamon, New York.
1964.
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observed thresholds. The agreement between theory and experiment is rather good.
As we shall see. the actual dielectric constant of a metal is far more complicated than
(1.37)and it is to some extent a piece of good fortune that the alkali metals so strikingly
display this Drude behavior. In other metals different contributions to the dielectric
constant compete quite substantially with the “Drude term” (1.37).

A second important consequence of (1.37) is that the electron gas can sustain
charge density oscillations. By this we mean a disturbance in which the electric charge
density?? has an oscillatory time dependence ¢~ . From the equation of continuity,

Vej=— (‘:—‘: V- jlw) = iwplw). (1.42)
and Gauss's law,
V- E(w) = 4nplw), (1.43)
we find, in view of Eq. (1.30). that
iwple) = dno(w)plw). (1.44)
This has a solution provided that
1+ ﬁ%@ = (1.45)

which is precisely the condition we found above for the onset of propagation of
radiation. In the present context it emerges as the condition the frequency must meet
if a charge density wave is to propagate,

The nature of this charge density wave, known as a plasma oscillation or plasmon,
can be understood in terms of a very simple model.2* ITmagine displacing the entire
electron gas, as a whole. through a distance d with respect to the fixed positive back-
ground of the ions (Figure 1.5).2% The resulting surface charge gives rise to an electric
field of magnitude 4no, where ¢ is the charge per unit area?® at either end of the slab.

Figure 1.5 G nde N electrons
Simple model of a plasma oscillation. Y A N

m =

b 1

¥ E=2no+ 2wo = 4wnde

¥

., =

L 1
Y =
N Zions 0 =-nde

33

22 The charge density p should not be confused with the resistivity, also generally denoted by p.
The context will always make it clear which is being referred to.

23 Since the field of a uniform plane of charge is independent of the distance from the plane, this crude
argument. which places all of the charge density on two opposite surfaces, is not as crude as it appears at
first glance.

34 We observed earlier that the Drude model docs take the electron-ion interaction into account by
acknowledging that the attraction to the positively charged ions confines the electrons to the interior of the
metal. In this simple model of a plasma oscillation it is precisely this attraction that provides the restoring
force.

25 The surface charge density o should not be confused with the conductivity. also generally denoted
by a.
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Consequently the electron gas as a whole will obey the equation of motion:
Nmd = —Ne|4no| = —Ne (4nnde) = —4nne’Nd, (1.46)

which leads to oscillation at the plasma frequency.

Few direct observations have been made of plasmons. Perhaps the most notable
is the observation of energy losses in multiples of A, when electrons are fired through
thin. metallic films.2® Nevertheless, the possibility of their excitation in the course
of other electronic processes must always be borne in mind.

THERMAL CONDUCTIVITY OF A METAL

The most impressive success of the Drude model at the time it was proposed was its
explanation of the empirical law of Wiedemann and Franz (1853). The Wiedemann-
Franz law states that the ratio, /o, of the thermal to the electrical conductivity of
a great number of metals is directly proportional to the temperature, with a propor-
tionality constant which is to a fair accuracy the same for all metals. This remarkable
regularity can be seen in Table 1.6, where measured thermal conductivities are given
for several metals at 273 K and 373 K. along with the ratios k/6T (known as the
Lorenz number) at the two temperatures.

In accounting for this the Drude model assumes that the bulk of the thermal current
in a metal is carried by the conduction electrons. This assumption is based on the
empirical observation that metals conduct heat much better than insulators do. Thus
thermal conduction by the ions?” (present in both metals and insulators) is much
less important than thermal conduction by the conduction electrons (present only
in metals).

To define and estimate the thermal conductivity, consider a metal bar along which
the temperature varies slowly. If there were no sources and sinks of heat at the ends
of the bar to maintain the temperature gradient, then the hot end would cool and the
cool end would warm, ie.. thermal energy would flow in a sense opposite to the
temperature gradient. By supplying heat to the hot end as fast as it flows away, one
can produce a steady state in which both a temperature gradient and a uniform flow
of thermal energy are present. We define the thermal current density § to be a vector
parallel to the direction of heat flow, whose magnitude gives the thermal energy per
unit time crossing a unit area perpendicular to the flow.?® For small temperature
gradients the thermal current is observed to be proportional to VT (Fourier's law):

= —-rk¥T. (1.47)

The proportionality constant x is known as the thermal conductivity. and is positive.
since the thermal current flows opposite to the direction of the temperature gradient.

20 C.J. Powell and J. B. Swan, Phys. Rev. 115, 869 (1959).

**  Although the metallic ions cannot wander through the metal. there is a way in which they can
transport thermal energy (though not electric charge: the ions can vibrate a little about their mean posi-
tions. leading to the transmission of thermal energy in the form of elastic waves propagating through the
network of ions. See Chapter 25.

2% Note the analogy to the definition of the electrical current density j. as well as the analogy between
the laws of Ohm and Fourier.
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Table 1.6
EXPERIMENTAL THERMAL CONDUCTIVITIES AND LORENZ NUMBERS
OF SELECTED METALS

273 K 373K
ELEMENT K k/eT K kleT
(watt/em-K)  (watt-ohm/K?)  (watt/cm-K)  (watt-ohm/K?)
Li 0.71 222 x 1078 0.73 243 x 1078
Na 1.38 212
K 1.0 2.23
Rb 0.6 242
Cu 3.85 2.20 3.82 2:29
Ag 4.18 2.31 4.17 2.38
Au 3.1 2.32 3.1 2.36
Be 2.3 2.36 1.7 242
Mg 1.5 2.14 1.5 2:25
Nb 0.52 2.90 0.54 2.78
Fe 0.80 261 0.73 2.88
Zn 1.13 2.28 11 2.30
Cd 1.0 2.49 1.0
Al 2.38 2.14 230 2.19
“In 0.88 2.58 0.80 2.60
11 0.5 275 0.45 2.75
Sn 0.64 2.48 0.60 2.54
Pb 0.38 2.64 0.35 2.53
Bi 0.09 353 0.08 3.35
Sb 0.18 2.57 0.17 2.69

Source: G. W. C. Kaye and T. H. Laby, Table of Physical and Chemical Constants, Longmans
Green, London, 1966

As a concrete example let us examine a case where the temperature drop is uniform
in the positive x-direction. In the steady state the thermal current will also flow in
the x-direction and have a magnitude j* = —k dT/dx. To calculate the thermal
current we note (assumption 4, page 6) that after each collision an electron emerges
with a speed appropriate to the local temperature; the hotter the place of the collision,
the more energetic the emerging electron. Consequently, even though the mean
electronic velocity at a point may vanish (in contrast to the case when an electric
current flows) electrons arriving at the point from the high-temperature side will have
higher energies than those arriving from the low-temperature side leading to a net
flow of thermal energy toward the low-temperature side (Figure 1.6).

To extract a quantitative estimate of the thermal conductivity from this picture,
consider first an oversimplified “one-dimensional™ model, in which the electrons can
only move along the x-axis, so that at a point x half the electrons come from the high-
temperature side of x, and half from the low. If §(T) is the thermal energy per electron
in a metal in equilibrium at temperature 7, then an electron whose last collision was
at x’ will, on the average, have a thermal energy &T[x']). The electrons arriving at
x from the high-temperature side will, on the average, have had their last collision at



22 Chapter 1 The Drude Theory of Metals

Figure 1.6

Schematic view of the relation between temperature

gradient and thermal current. Electrons arriving at the

center of the bar from the left had their last collision
T in the high-temperature region. Those arriving at the

center from the right had their last collision in the
low-temperature region. Hence electrons moving to
the right at the center of the bar tend to be more
energetic than those moving to the left, yielding a net
thermal current to the right.

High T Low T

x — vt, and will therefore carry a thermal energy per electron of size &(T[x — vt]).
Their contribution to the thermal current density at x will therefore be the number of
such electrons per unit volume, n/2, times their velocity, v, times this energy, or
(n/2)v8(T[x — vt]). The electrons arriving at x from the low-temperature side, on
the other hand, will contribute (n/2)(—v)[8(T[x + v7])], since they have come from
the positive x-direction and are moving toward negative x. Adding these together gives

= mo[&T[x — vt]) — &T[x + vz])]. (1.48)

Provided that the variation in temperature over a mean free path (£ = vt) is very
small,?® we may expand this about the point x to find:

j*=mk di'?: (— 3—:) (1.49)

To go from this to the three-dimensional case we need only replace v by the x-
component v, of the electronic velocity v, and average over all directions. Since?©
) = {0, = (v,2) = }v?, and since nd&/dT = (N/V)de/dT = (dEMT)V =
¢,» the electronic specific heat, we have:

§i* = $o’1c(—VT) (1.50)

or
k = Yv’1c, = $tuc,, (1.51)

where v? is the mean square electronic speed.

We emphasize the roughness of this argument. We have spoken rather glibly about
the thermal energy per electron carried by a particular group of electrons, a quantity
one might be hard pressed to define with precision. We have also been quite careless
about replacing quantities, at various stages of the calculation, by their thermal
averages. One might object, for example, that if the thermal energy per electron
depends on the direction the electrons come from, so will their average speed, since
this too depends on the temperature at the place of their last collision. We shall note
below that this last oversight is canceled by yet another oversight, and in Chapter 13

* Its change in {is (¢/L ) times its change in the sample length L.
3% In equilibrium the velocity distribution is isotropic. Corrections to this due to the temperature
gradient are exceedingly small.
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we shall find by a more rigorous argument that the result (1.51) is quite close to (and,
in special circumstances, precisely) the correct one.

Given the estimate (1.51), we can derive another result independent of the mysteries
buried in the relaxation time T, by dividing the thermal conductivity by the electrical
conductivity (1.6):

K jeam?

a ne’

(1.52)

It was natural for Drude to apply the classical ideal gas laws in evaluating the
electronic specific heat and mean square velocity. He therefore in effect took ¢, to
be 3nkg and 3mv? to be 3k T, where kg is Boltzmann's constant, 1.38 x 1076 erg/K.

This leads to the result
- 3 k 2
- (—”) T (1.53)
c 2\e

The right side of (1.53) is proportional to T and depends only on the universal con-
stants kg and e, in complete agreement with the law of Wiedemann and Franz
Equation (1.53) gives a Lorenz number®"

x _3(ksY’
cT 2\e

which is about halfl the typical value given in Table 1.6. In his original calculation
of the electrical conductivity, Drude erroneously found half the correct result (1.6),
as a result of which he found a value x/¢T = 2.22 x 10~ ® watt-ohm/K?, in extraor-
dinary agreement with experiment.

This success, though wholly fortuitous, was so impressive as to spur further in-
vestigations with the model. It was, however, quite puzzling, since no electronic
contribution to the specific heat remotely comparable to 3nky was ever observed.
Indeed, at room temperature there appeared to be no electronic contribution to the
specific heat measured at all. In Chapter 2 we shall find that the classical ideal gas
laws cannot be applied to the electron gas in a metal. Drude’s impressive success,
aside from his factor-of-two mistake, is a consequence of two errors of about 100 that
cancel: at room temperature the actual electronic contribution to the specific heat
is about 100 times smaller than the classical prediction, but the mean square electronic
speed is about 100 times larger.

We shall examine the correct theory of the equilibrium thermal properties of the
free electron gas in Chapter 2, and shall return to a more correct analysis of the thermal
conductivity of a metal in Chapter 13. Before leaving the subject of thermal transport,
however, we should correct one oversimplification in our analysis that obscures an
important physical phenomenon:

We calculated the thermal conductivity by ignoring all manifestations of the
temperature gradient except for the fact that the thermal energy carried by a group

1.24 x 107 '3 (erg/esu-K)?

1.11 x 10”® watt-ohm /'K?, (1.54)

31 Since (joule/coulomb)? = (walt/amp)? = watt-ohm, the practical units in which Lorenz numbers
are quoted are often called watt-ohm/K?2, instead of (joule/coulomb-K)?.
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of electrons depends on the temperature at the place of their last collision. But if
electrons emerge from a collision with higher energies when the temperature is higher,
they will also have higher speeds. It would therefore appear that we should let the
electron’s speed v as well as its contribution to the thermal energy depend on the place
of the last collision. As it turns out such an additional term only alters the result
by a factor of the order of unity, but we were in fact quite right to ignore such a correc-
tion. It is true that immediately after the temperature gradient is applied there will be
a nonvanishing mean electronic velocity directed toward the low-temperature region.
Since the electrons are charged, however, this velocity will result in an electric current.
But thermal conductivity measurements are performed under open-circuit conditions,
in which no electric current can flow. Therefore the electric current can continue only
until enough charge has accumulated at the surface of the sample to build up a re-
tarding electric field that opposes the further accumulation of charge, and hence
precisely cancels the effect of the temperature gradient on the electronic mean ve-
locity.*? When the steady state is reached there will be no electric current flow, and
we were therefore correct in assuming that the mean electronic velocity at a point
vanished.

In this way we are led to consider another physical effect: A temperature gradient
in a long, thin bar should be accompanied by an electric field directed opposite to
the temperature gradient. The existence of such a field, known as the thermoelectric
field, has been known for some time (the Seebeck effect). The field is conventionally
written as

E = OVT, (1.55)

and the proportionality constant Q is known as the thermopower. To estimate the
thermopower note that in our “one-dimensional” model the mean electronic velocity
at a point x due to the temperature gradient is

drv

Helx — v1) — o(x + )] = =er

- -z 3 (1.56)
B dx\2 ) .
We can again generalize to three dimensions*? by letting t> — r,2, and noting that
02y = {p,*> = {v.*> = §rl. so that
T di? .

Yo = — 6dT (VT). (157

Yo

The mean velocity due to the electric field is**

’E
ve= — L (1.58)
m

32 See the analogous discussion of the genesis of the Hall field on page 12.
33 Cf. the discussion leading from Eq. (1.49) to Eq. (1.50).
3 See the discussion on page 7.



Problems 25

To have vg + ve¢ = 0, we require that

1 y
0= _(ﬁ) dT 2~ 3ne e

This result is also independent of the relaxation time. Drude evaluated it by another
inappropriate application of classical statistical mechanics, setting ¢, equal to 3nkg/2
to find that

= —-2=-043 x 107* volt/K. (1.60)

Observed metallic thermopowers at room temperature are of the order of microvolts
per degree, a factor of 100 smaller. This is the same error of 100 that appeared twice
in Drude’s derivation of the Wiedemann-Franz law, but being now uncompensated,
it offers unambiguous evidence of the inadequacy of classical statistical mechanics in
describing the metallic electron gas.

With the use of quantum statistical mechanics one removes this discrepancy.
However, in some metals the sign of the thermopower-—the direction of the thermo-
electric field-—is opposite to what the Drude model predicts. This is as mysterious as
the discrepancies in the sign of the Hall coefficient. The quantum theory of solids can
account for a sign reversal in the thermopower as well, but one’s sense of triumph
is somewhat tempered in this case, for a really quantitative theory of the thermo-
electric field is still lacking. We shall note in later discussions some of the peculiarities
of this phenomenon that make it particularly difficult to calculate with precision.

These last examples have made it clear that we cannot proceed very far with a

free electron theory without a proper use of quantum statistics. This is the subject of
Chapter 2.

PROBLEMS

1. Poisson Distribution
In the Drude model the probability of an electron suffering a collision in any infinitesimal interval
dt is just di/t.

(a) Show that an electron picked at random at a given moment had no collision during the
preceding t seconds with probability e "*. Show that it will have no collision during the next
t seconds with the same probability.

(b)  Show that the probability thal the time interval between two successive collisions of an
electron falls in the range between t and ¢ + dris(dt/t)e "

{c) Show as a consequence of (a) that at any moment the mean time back to the last collision
(or up to the next collision) averaged over all electrons is t.

(d) Show as a consequence of (b) that the mean time between successive collisions of an
electron is 1.

{e) Part (c) implics that at any moment the time T between the last and next collision
averaged over all electrons is 27. Explain why this 1s not inconsistent with the result in (d). (A
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thorough explanation should include a derivation of the probability distribution for T.) A failure
to appreciate this subtlety led Drude to a conductivity only half of (1.6). He did not make the
same mistake in the thermal conductivity, whence the factor of two in his calculation of the
Lorenz number (sec page 23).

2. Joule Heating

Consider a metal at uniform temperature in a static uniform electric field E. An electron expe-
riences a collision, and then, after a time r, a second collision. In the Drude model, energy is not
conserved in collisions, for the mean speed of an electron emerging from a collision does not
depend on the energy that the electron acquired from the field since the time of the preceding
collision (assumplion 4, page 6).

(a) Show that the average energy lost to the ions in the second of two collisions separated
by a time t is (eE1)*/2m. (The average is over all directions in which the electron emerged from
the first collision.)

(b) Show, using the result of Problem 1(b), that the average energy loss to the ions per
electron per collision is (eEx)? /m, and hence that the average loss per cubic centimeter per second
is (ne*t/mE? = ¢ E%. Deduce that the power loss in a wire of length L and cross section A4 is
I*R, where I is the current flowing and R is the resistance of the wire.

3. Thomson Effect

Suppose that in addition to the applied electric field in Problem 2 there 1s also a uniform tem-
perature gradient VTin the metal. Since an electron emerges from a collision at an energy deter-
mined by the local temperature, the energy lost in collisions will depend on how far down the
temperature gradient the electron travels between collisions, as well as on how much energy it
has gained from the electric field. Consequently the power lost will contain a term proportional
to E - VT (which is easily isolated from other terms since it is the only term in the second-order
energy loss that changes sign when the sign of E is reversed). Show that this contribution is given
in the Drude model by a term of order (net/m) (d€/dT) (E - VT), where & is the mean thermal
energy per electron. (Calculate the energy lost by a typical electron colliding at r, which made its
last collision at r — d. Assuming a fixed (that is, energy-independent) relaxation time t, d can be
found to linear order in the field and temperature gradient by simple kinematic arguments, which
1s enough to give the energy loss to second order.)

4. Helicon Waves
Suppose that a metal is placed in a uniform magnetic field H along the z-axis. Let an AC electric
field Ee™ " be applied perpendicular to H.

(a) If the electric field is circularly polarized (E, = +iE,) show that Eq. (1.28) must be
generalized to

. Go 2 - g
e = | ———— Ex’ .= tij., J. = 0. 1.61
- (1 — iw F wc)r) b o N

(b) Show that, in conjunction with (1.61), Maxwell's equations (1.31) have a solution

E, = Eg'™~ E = +iE,, E,=0, (1.62)

provided that k¢? = ew?, where

,? 1
= ] o P [ e ) 1.63
e(w) = (w T o ¥ l_h_) (1.63)
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(c} Sketch €(w) for @ > 0 (choosing the polarization E, = iE,y and demonstrate that solu-
tions to k2 = ew? exist for arbitrary k at frequencies © > @, and o < o). (Assume the
high field condition .t 3 1. and note that even for hundreds of kilogauss, w,/w, > 1.)

(d) Show that when & <« @, the relation between k and o for the low-frequency solution is

w = W, (J%—E,:) (1.64)

Op

This low-frequency wave, known as a helicon, has been observed in many metals.*® Estimate
the helicon frequency if the wavelength is 1 cm and the field is 10 kilogauss, at typical metallic
densities.

5. Surface Plasmons
An electromagnetic wave that can propagate along the surface of a metal complicates the obser-
vation of ordinary (bulk) plasmons. Let the metal be contained in the half space = > 0,z < 0
being vacuum. Assume that the electric charge density p appearing in Maxwell’s equations
vanishes both inside and outside the metal. (This does not preclude a surface charge density
concentrated in the plane z = 0.) The surface plasmon is a solution to Maxwell's equations of
the form:

E, = Aé®e X, E, =0, E.=Be¥e ™. 23>0

E, = Cé*eF* E =0, E.= Deek, z < 0; (1.65)

g, K, K’ real. K, K’ positive.

(a) Assuming the usual boundary conditions (E; continuous, (€E), continuous) and using
the Drude results (1.35) and (1.29) find three equations relating g, K, and K’ as functions of w.

(b) Assuming that wr > 1, plot g% as a function of wh

(¢) In the limit as gc » o, show that there is a solution at frequency @ = @,/ \/5 Show
from an examination of K and K’ that the wave is confined to the surface. Describe its polarization.
This wave is known as a surface plasmon.

35 R. Bowers et al.. Phys. Rev. Letters 7.339 (1961).
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In Drude’s time, and for many years thereafter, it seemed reasonable to assume that
the electronic velocity distribution, like that of an ordinary classical gas of density
n = N'V. was given in equilibrium at temperature T by the Maxwell-Boltzmann
distribution. This gives the number of electrons per unit volume with velocities in the
range! dv about v as fg(v)dv, where

M2
felv) = n (ZJ:RLT) o~ mrlakgT 2.1)
B

We saw in Chapter 1 that in conjunction with the Drude model this leads to good
order of magnitude agreement with the Wiedemann-Franz law, but also predicts a
contribution to the specific heat of a metal of 3k per electron that was not observed.?

This paradox cast a shadow over the Drude model for a quarter of a century, which
was only removed by the advent of the quantum theory and the recognition that for
electrons® the Pauli exclusion principle requires the replacement of the Maxwell-
Boltzmann distribution (2.1) with the Fermi-Dirac distribution:

(myh)? 1
an® exp[(Gmv? — kgTo)/keT] + 1

Here h is Planck’s constant divided by 2m, and T, 1s a temperature that is determined
by the normalization condition®

Jw) = (2.2)

n = Jd\r‘ f(v), (2.3)

and is typically tens of thousands of degrees. At temperatures of interest (that is,
Jess than 10? K) the Maxwell-Boltzmann and Fermi-Dirac distributions are spectacu-
larly different at metallic electronic densities (Figure 2.1).

In this chapter we shall describe the theory underlying the Fermi-Dirac distribution
(2.2) and survey the consequences of Fermi-Dirac statistics for the metallic electron
gas.

Shortly after the discovery that the Pauli exclusion principle was needed to account
for the bound electronic states of atoms, Sommerfeld applied the same principle to
the free electron gas of metals, and thereby resolved the most flagrant thermal anoma-
lies of the early Drude model. In most applications Sommerfeld’s model is nothing
more than Drude’s classical electron gas with the single modification that the elec-
tronic velocity distribution is taken to be the quantum Fermi-Dirac distribution

! We use standard vector notation. Thus by r we mean the magnitude of the vector +: a velocity is in

the range dv about v if its ith component lies between r; and t; + dry, for i = x. v, z; we also use dv to
denote the volume of the region of velocity space in the range dv about v: - dv = dr,du,dr, (thereby following
the practice common among physicists of failing to distinguish notationally between a region and its
volume. the significance of the symbo!l being clear from context).

*  Because. as we shall see. the actual elcctronic contribuuion is about 100 times smaller at room
temperature. becoming smaller still as the temperature drops.

4 And any other particles obeying Fermi-Dirac siatistics.

* Note that the constants in the Maxwell-Boltzmann distribution (2.1) have already been chosen so
that (2.3) is satisfied. Equation (2.2)1s derived below: see Eq. (2.89). In Problem 3d the prefactor appearing
in Eq. (2.2) is cast in a form that facilitates direct comparison with Eq. {2.1).
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Figure 2.1
(a) The Maxwell-Boltzmann and Fermi-Dirac distributions for typical metailic densities

at room temperature. (Both curves are for the density given by T = 0.017,.) The scale
is the same for both distributions, and has been normalized so that the Fermi-Dirac
distribution approaches 1 at low energies. Below room temperature the differences between
the two distributions are even more marked. (b) A view of that part of (a) between x = 0
and x = 10. The x-axis has been stretched by about a factor of 10, and the f~axis has been
compressed by about 500 to get all of the Maxwell-Boltzmann distribution in the figure.
On this scale the graph of the Fermi-Dirac distribution is indistinguishable from the x-axis.
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rather than the classical Maxwell-Boltzmann distribution. To justify both the use of
the Fermi-Dirac distribution and its bold grafting onto an otherwise classical theory,
we must examine the quantum theory of the electron gas.’

For simplicity we shall examine the ground state (i.e., T = 0) of the electron gas
before studying it at nonzero temperatures. As it turns out. the properties of the
ground state are of considerable interest in themselves: we shall find that room tem-
perature, for the electron gas at metallic densities, is a very low temperature indeed,
for many purposes indistinguishable from 7 = 0. Thus many (though not all) of the
electronic properties of a metal hardly differ from their values at T = 0, even at room
temperature.

GROUND-STATE PROPERTIES OF THE ELECTRON GAS

We must calculate the ground-state properties of N electrons confined to a volume
V. Because the electrons do not interact with one another (independent electron
approximation) we can find the ground state of the N electron system by first finding
the energy levels of a single electron in the volume V, and then filling these levels up
in a manner consistent with the Pauli exclusion principle, which permits at most one
electron to occupy any single electron level.®

A single electron can be described by a wave function (r) and the specification of
which of two possible orientations its spin possesses. Ifthe electron has no interactions,
the one electron wave function associated with a level of energy & satisfies the time-
independent Schrodinger equation”:

Wt @l a2 B_.
— = ((,? + P + F) yin) = — E};V Y(r) = &y(r). (2.4)

We shall represent the confinement of the electron (by the attraction of the ons)
to the volume V' by a boundary condition on Eq. (2.4). The choice of boundary
condition, whenever one is dealing with problems that are not ex plicitly concerned
with effects of the metallic surface, is to a considerable degree at one’s disposal and
cun be determined by mathematical convenience. for if the metal is sufficiently large
we should expect its hulk properties to be unaflected by the detailed configuration of
its surface.® In this spirit we first select the shape of the metal to suit our analytic
convenience. The time-honored choice is a cube® of side L = V13,

Next we must append a boundary condition to the Schrodinger equation (2.4).

* Throughout this chapter we shall ke “clectron gas™ o mean a gas of free and independent clectrons

tee page 4 unless we are expheitly considering corrections due to electron-cleciron or clectron-ion
interactions

® Note that here and Later we shall reserve the term “siate™ for the state of 1he A-electron system, and
the term “level™ for a one-clectron state.

We also make the Iree electron approximation. so that no potenual energy term appears m the
Schrodinger equartion.

" Thisis the approach that is almosi universally followed in theories of macroscopic matter. Rigorous
proofs tha bulk properties are independent of the boundary conditions can now be construcied in 2 vanety
of contexts. The work most pertinent 10 solid state physics 1s by J L. Lebowitz and E. H. Lieh, Phys.
Rev. Leri. 22. 631 (1969).

¢ We shall subsequently find it far more comvenient to 1ake not 4 cube but a parallelepiped with
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reflecting the fact that the electron is confined to this cube. We also make this choice
in the belief that it will not affect calculated bulk properties. One possibility
is to require the wave function i (r) to vanish whenever r is on the surface of the cube.
This, however, is often unsatisfactory, for it leads to standing-wave solutions of (2.4),
while the transport of charge and energy by_the electrons is far more conveniently
discussed in terms of running waves. A more satisfactory choice is to emphasize the
inconsequence of the surface by disposing of it altogether. We can do this by imagining
each face of the cube to be joined to the face opposite it. so that an electron coming
to the surface is not reflected back in, but leaves the metal. simultaneously reentering
at a corresponding point on the cpposite surface. Thus, if our metal were one-dimen-
sional, we would simply replace the line from 0 10 L to which the electrons were
confined, by a circle of circumference L. In three dimensions the geometrical embodi-
ment of the boundary condition, in which the three pairs of opposite faces on the cube
are joined, becomes topologically impossible to construct in three-dimensional space.
Nevertheless, the analytic form of the boundary condition is easily generalized. In
one dimension the circular model of a metal results in the boundary condition
W(x + L) = y(x), and the generalization to a three-dimensional cube is evidently

Yix,y,z + L) = yix. v. 2),
Yix,y + L.2) = ix. v 2) (2.5)
Yilx + L,y.2) = ¢lx v o)

Equation (2.5) is known as the Born-von Karman (or periodic) boundary condition.
We shall encounter it often (sometimes in a slightly generalized® form).

We now solve (2.4) subject to the boundary condition (2.5). One can verify by
differentiation that a solution, neglecting the boundary condition, is

]
tn =~ Lo (2.6)
At
with energy
a(k) = h—-k:. @7
2m

where K is any position independent vector. We have picked the normalization con-
stant in (2.6) so that the probability of finding the electron somewhere 1n the whole
volume V' is unity:

1 = jdr v~ (2.8)

To see the significance of the vector k. note that the level y(r) is an cigenstate of
the momentum operator,

hé | fiE
== =¥, (p, —_ Y Elc.). 2.9
1cr 1 1 X

edges nol necessarily equal or perpendicular. For the momeni we use a cube 10 avond minor geometrical
complexities. but it is a useful exercise to verify that all the results of this section remain vald for v -
paralfelepiped.
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with cigenvatue p = hk. for
h ¢
-— T = nketr, (2.10)
Ler
Since a particle in an eigenstate of an operator has a definite value of the corre-
sponding observable given by the eigenvalue, an electron in the ltevel Y, (r) has a
definite momentum proportional 1o k:

p = hk. @.11)
and a velocity v = p m of
hk

m

(2.12)

In view of this the energy (2.7) can be written in the familiar classical form,
2
§= f - = ime?, (2.13)
2m
We can also interpret k as a wave vector. The planc wave ¢* ' is constant in any
plane perpendicular to K tsince such planes are defined by the equation k + r = con-
stant) and it is periodic along lines parallel 1o k. with wavelength

b=, @.14)

known as the de Broglie wavelength.
We now invoke the boundary condition (2.5). This permits only certain discrete
values of k. since (2.5) will be satisfied by the general wave function (2.6) only if

el = bl = gt | @.15)

Since ¢ = 1 only if = = 2nin. where n is an integer,'® the components of the wave
vector k must be of the form:
REN 2mn,

k="K ko=

L

.’R}'.l 1 ( )
. ltl_ s —[ - Ny l'.'j.. n.m egc[ S. 2.]"

Thus in a three-dimensional space with Cartesian axes k,. k,, and k. (known as
h-space) the allowed wave vectors are those whose coordinates along the three axes
are given by integral multiples of 2n/L. This is illustrated (in two dimensions) in
Figure 2.2,

Generally the only practical use one makes of the quantization condition (2.16)
is this: One often needs 10 know how many allowed values of k are contained in
aregion of k-space that is enormous on the scale of 2n, L, and that therefore contains
a vast number of allowed points. If the region is very large,'" then to an excellent
approximation the number of allowed points is just the volume of k-space contained
within the region, divided by the volume of k-space per point in the network of

" We shall always use the word “intezer™ 10 mean the negative integers and zero. as well as 1he

posilive inlegers.,
" And not 1o irregularly shaped: only a neghgible fraction of the points should be within O{2n L)
of the surface.
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Figure 2.2 k,
Points in a two-dimensional k-space of the form k, = . . . .
2an, L.k, = 2nn, L. Note that the arca per point is just
(2n LY. In d dimensions the volume per point is (2r Li’

~I

allowed values of k. That latter volume (see Figure 2.2) is just (2r L)>. We therefore
conclude that a region of k-space of volume Q will contamn
4
= Q_1 = 'I.'Ng 2.17)
{2n L) 8n
allowed values of k. or. equivalently. that the number of allowed k-values per unit
volume of k-space (also known as the k-space density of levels) is just
L 2.18
8n 8
In practice we shall deal with k-space regions so large (~ 10** points) and so regular
(typically spheres) that to all intents and purposes (2.17) and (2.18) can be regarded
as exact. We shall begin to apply these important counting formulas shortly.
Because we assume the electrons are noninteracting we can build up the N-clectron
ground state by placing electrons into the allowed one-electron levels we have just
found. The Pauli exclusion principle plays a vital role in this construction {as it does
in building up the states of many electron atoms): we may place at most one electron
in each single electron level. The one-clectron levels are specified by the wave vectors
k and by the projection of the electron’s spin along an arbitrary axis, which can take
either of the two values /12 or —h 2. Therefore associated with each allowed wave
vector k are two electronic levels, one for each direction of the electron’s spin.
Thus in building up the N-electron ground state we begin by placing two electrons
in the one-electron level k = 0, which has the lowest possible one-electron energy
& = (. We then continue to add electrons, successively filling the one-clectron levels
of lowest energy that are not already occupied. Since the energy of 2 one-electron
level is directly proportional to the square of its wave vector (see (2.7)), when N is
enormous the occupied region will be indistinguishable from a sphere.’* The radius
of this sphere is called kg (F for Fermi), and its volume Q is 4rnkg3/3. According to
(2.17) the number of allowed values of k within the sphere is

4nk*\ [V ke?
( H3} )(si’) = 2-19)

12 it were not spherical it would not be the ground state, for we could then construct a state of lower
energy by me g theclectrons in levels farthest away from k = U into unoceupied levels closer 1o the origin.
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Since each allowed k-value leads to two one-electron levels (one for each spin value),
in order to accommodate N electrons we must have
ke® ke®
N=2-—V=—VW .20
6n? 3n? (220
Thus if we have N electrons in a volume V(i.e,, an electronic density n = N/V),
then the ground state of the N-electron system is formed by occupying all single-
particle levels with k less than kg, and leaving all those with k greater than kg un-
occupied, where kr is given by the condition:

@21)

This free and independent electron ground state is described by some rather
unimaginative nomenclature:

The sphere of radius ky (the Fermi wave vector) containing the occupied one
electron levels is called the Fermi sphere.

The surface of the Fermi sphere, which separates the occupied from the unoccupied
levels is called the Fermi surface. (We shall see, starting with Chapter 8, that the
Fermi surface is one of the fundamental constructions in the modern theory of metals;
in general it is not spherical.)

The momentum hkr = pr of the occupied one-electron levels of highest energy
is known as the Fermi momentum; their energy, &g = h*kp?/2m is the Fermi energy;
and their velocity, v = pg/m, is the Fermi velocity. The Fermi velocity plays a role
in the theory of metals comparable to the thermal velocity, v = (3kgT/m)"/?, in a
classical gas.

All these quantities can be evaluated in terms of the conduction electron density,
via Eq. (2.21). For estimating them numerically it is often more convenient to express
them in terms of the dimensionless parameter r,/a, (see page 4), which varies from
about 2 to 6 in the metallic elements. Taken together, Egs. (1.2) and (2.21) give

_Oma™ 192

ke 2.22)
ra rx
or B
k,;iéiﬁ—t- 2.23)
Is/ag

Since the Fermi wave vector is of the order of inverse angstroms, the de Broglie
wavelength of the most energetic electrons is of the order of angstroms.
The Fermi velocity is

P (ﬁ) ke = 220 5 108 cm/sec. .24

m rg/ag

This is a substantial velocity (about 1 percent of the velocity of light). From the
viewpoint of classical statistical mechanics this is quite a surprising re<»lt, for we are
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describing the ground state (T = 0), and all particles in a classical gas have zero
velocity at T = 0. Even at room temperature the thermal (i.e., average) velocity for
a classical particle with the electronic mass is only of order 107 cm/sec.
The Fermi energy is conveniently written in the form (since aq = h?/me?)
flzk 2 ez )
§p = —— = (— (krao)*. (2.25)

2m 2a,

Here €?/2a,, known as the rydberg (Ry), is the ground-state binding energy of the
hydrogen atom, 13.6 electron volts.!* The rydberg is as convenient a unit of atomic
energies as the Bohr radius is of atomic distances. Since kraq is of the order of
unity, Eq. (2.25) demonstrates that the Fermi energy has the magnitude of a typical
atomic binding energy. Using (2.23) and ap = 0.529 x 1078 cm, we find the explicit
numerical form:

50.1 eV

= ralao)”

(2.26)

indicating a range of Fermi energies for the densities of metallic elements between
1.5 and 15 electron volts.
Table 2.1 lists the Fermi energy, velocity, and wave vector for the metals whose
conduction electron densities are given in Table 1.1.
To calculate the ground-state energy of N electrons in a volume ¥ we must add
up the energies of all the one-electron levels inside the Fermi sphere*:
2
E=27Y Lol (2.27)
k<kp <M
Quite generally, in summing any smooth function F(k) over all allowed values of
k, one may proceed as follows:
Because the volume of k-space per allowed k value is Ak = 8n3/V (see Eq. (2.18))
it is convenient to write

z F(k) = é ); F(K) Ak, (2.28)

for in the limit as Ak — 0 (ie., ¥ — <o) the sum ZF(k) Ak approaches the integral
§ dk F(k), provided only that F(k) does not vary appreciably'* over distances in k-space
of order 2n/L. We may therefore rearrange (2.28) and write

.1 dk
Jim ng F(k) = I@ F(k). (2.29)

In applying (2.29) to finite, but macroscopically large, systems one always assumes
that (1/V) ZF(K) differs negligibly from its infinite volume limit (for example, one

13 Srrictly speaking, the rydberg is the binding energy in the approximation of infinite proton mass.
Anelectron volt is the energy gained by an electron crossing a potential of 1 volt: 1eV = 1.602 x 10" *2erg
= 1.602 x 107'% joule.

1 The factor of 2 is for the two spin levels allowed for each k.

15 The most celebrated case in which F fails to satisfy this condition is the condensation of the ideal
Bose gas. In applications to metals the problem never arises.
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Table 2.1
FERMI ENERGIES, FERMI TEMPERATURES, FERMI WAVE VECTORS, AND
FERMI VELOCITIES FOR REPRESENTATIVE METALS®

ELEMENT r,/ay & T; ke Up
Li 3.25 474V 551 x 10°K 112 x 10%cm™!  1.29 x 10° cm/sec
Na 393 324 377 092 1.07
K 4.86 2,12 246 0.75 0.86
Rb 5.20 1.85 2.15 0.70 0.81
Cs 5.62 1.59 1.84 0.65 0.75
Cu 2,67 7.00 8.16 1.36 1.57
Ag 3.02 5.49 6.38 1.20 1.39
Au 301 5.53 6.42 1.21 1.40
Be 1.87 143 16.6 1.94 2.25
Mg 2.66 7.08 823 1.36 1.58
Ca 327 4.69 5.44 111 1.28
Sr 357 393 4.57 1.02 L.18
Ba 371 3.64 4.23 098 1.13
Nb 3.07 5.32 6.18 1.18 1.37
Fe 212 111 130 1.71 1.98
Mn 214 109 127 1.70 1.96
Zn 2.30 9.47 11.0 1.58 1.83
Cd 2.59 147 8.68 1.40 1.62
Hg 2.65 7.13 8.29 1.37 1.58
Al 207 117 136 175 203
Ga 219 104 12.1 1.66 1.92
In 2.41 8.63 100 1.51 1.74 -
Tl 248 8.15 9.46 1.46 1.69
Sn 222 102 11.8 1.64 1.90
Pb 230 9.47 110 1.58 1.83
Bi 2.25 9.90 115 1.61 1.87
Sb 214 109 127 1.70 1.96

“The table entries are calculated from the values of r./a, given in Table 1.1 using m =
9.11 x 107 2% grams.

assumes that the electronic energy per unit volume in a 1-cm cube of copper is the
same as in a 2-cm cube).
Using (2.29) to evaluate (2.27), we find that the energy density of the electron gasis:

232 25 5
E_ 1 S

Vo k<kg 2m  n? 10m

(2.30)

To find the energy per electron, E/N, in the ground state, we must divide this by
N/V = kp*/3n2, which gives
E 3 hi: 3
—_———— = I §,. 2.31
N 10 m 57F =D
- We can also write this result as

E 3
&= 3keTr @.32)
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where T, the Fermi temperature, s

_ & 582
F 7 kg (rs/ao)?

x 10* K. (2.33)

Note, in contrast to this, that the energy per electron in a classical ideal gas, 3k T,
vanishes at T'= 0 and achieves a value as large as (2.32) only at T = #T; =~ 10* K.

Given the ground-state energy E, one can calculate the pressure exerted by the
electron gas from the relation P = —(¢E/@V)y. Since E = $NE&; and & is propor-
tional to kg2, which depends on ¥ only through a factor n** = (N/V)?3, it follows
that'©

2E
P= IV (2.34)

by:
B=-—-=—-V—. (2.35)

Since E is proportional to ¥ ~ %3, Eq.(2.34) shows that Pvaries as ¥ ~*/3, and therefore

5 IOE 2
B—§P=~§-~l;=§n£; (2-36)
or
5
B= (6'13-) x 10'° dynes/cm?. (2.37)
'sfﬂo

In Table 2.2 we compare the free electron bulk moduli (2.37) calculated from r,/ay,
with the measured bulk moduli, for several metals. The agreement for the heavier
alkali metals is fortuitously good, but even when (2.37) is substantially off, as it is in

Table 2.2
BULK MODULI IN 10'° DYNES/CM? FOR SOME
TYPICAL METALS"

METAL FREE ELECTRON B MEASURED B

Li 239 11.5

Na 9.23 6.42

K 3.19 2.81

Rb 2.28 1.92
Cs 1.54 1.43
Cu 63.8 1343

Ag 34.5 99.9

Al 228 76.0

2 The free electron value is that for a free electron gas at the observed
density of the metal, as calculated from Eq. (2.37).

e Atno temperatures the pressure and energy density continue to obey this relation. See (2.101).
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the noble metals, it is still of about the right order of magnitude (though it varies from
three times too large to three times too small, through the table). It is absurd to expect
that the free electron gas pressure alone should completely determine the resistance
of a metal to compression, but Table 2.2 demonstrates that this pressure is at least as
important as any other effects.

THERMAL PROPERTIES OF THE FREE ELECTRON GAS:
THE FERMI-DIRAC DISTRIBUTION

When the temperature is not zero it is necessary to examine the excited states of the
N-electron system as well as its ground state, for according to the basic principles
of statistical mechanics, if an N-particle system is in thermal equilibrium at tem-
perature T, then its properties should be calculated by averaging over all N-particle

stationary states, assigning to each state of energy E a weight Py(E) proportional to
—EfkgT .
e 5
e ErksT

Py(E) = T EhT (2.38)

(Here E, is the energy of the ath stationary state of the N-electron system, the sum
being over all such states.)

The denominator of (2.38) is known as the partition function, and is related to
the Helmholtz free energy, F = U — TS (where U is the internal energy and S, the
entropy) by

v~ ENkpT — o~ FnIkpT (2.39)

We can therefore write (2.38) more compactly as:
Py(E) = e E-FnIkgT, (2.40)

Because of the exclusion principle, to construct an N-electron state one must fill
N different one-electron levels. Thus each N-electron stationary state can be specified
by listing which of the N one-electron levels are filled in that state. A very useful
quantity to know is f;", the probability of there being an electron in the particular
one-electron level i, when the N-electron system is in thermal equilibrium.'” This
probability is simply the sum of the independent probabilities of finding the N-
electron system in any one of those N-electron states in which the ith level is occupied:

(summation over all N-electron
¥ =3 BET) states ain which there is an elec- (241)
tron in the one-electron level i).

We can evaluate f;¥ by the following three observations:

1. Since the probability of an electron being in the level i is just one minus the
probability of no electron being in the level i (those being the only two possibilities

17 [n the case we are interested in the level i is specified by the electron’s wave vector k and the pro-

jection s of its spin along some axis.
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allowed by the exclusion principle) we could equally well write (2.41) as

(summation over all N-electron
[ =1-3% PJE)") states y in which there is no elec- (2.42)
tron in the one-electron level i). -

2. By taking any (N + 1)-electron state in which there is an electron in the one-
electron level i, we can construct an N-electron state in which there is no electron
in the level i, by simply removing the electron in the ith level, leaving the occupation
of all the other levels unaltered. Furthermore, any N-electron state with no electron
in the one-electron level i can be so constructed from just one (N + 1)-electron state
with an electron in the level i.'® Evidently the energies of any N-electron state and
the corresponding (N + 1)-electron state differ by just §;, the energy of the only
one-electron level whose occupation is different in the two states. Thus the set of
energies of all N-electron states with the level i unoccupied is the same as the set of
energies of all (N + 1)-electron states with the level i occupied, provided that each
energy in the latter set is reduced by &;. We can therefore rewrite (2.42) in the peculiar
form

(summation over all (N + 1)-electron

f¥=1=Y PyE}'"' — &) states o in which there is an electron (2.43)
in the one-electron level i).

But Eq. (2.40) permits us to write the summand as
Py(E}*Y — &) = " W*8T Py (EF*Y), (2.44)
where g, known as the chemical potential, is given at temperature T by
u=Fyey — Fy. (2.45)
Substituting this into (2.43), we find:

(summation over all (N + I)-electron
f¥ =1 — s kTS py (EX*')y  states  in which there is an electron  (2.46)
in the one-electron level i).

Comparing the summation in (2.46) with that in (2.41) one finds that (2.46) simply
asserls that
fiN =1 - eﬂii_ﬂ)f“BTfr}"'*'i_ (2'47)

3. Equation (2.47) gives an exact relation between the probability of the one-
electron level i being occupied at temperature T in an N-electron system, and in an
(N + 1)-electron system. When N is very large (and we are typically interested in
N of the order of 10??) it is absurd to imagine that by the addition of a single extra
electron we could appreciably alter this probability for more than an insignificant
handful of one-electron levels.!® We may therefore replace /¥ ** by f;" in (2.47), which

1% Namely the one obtained by occupying all those levels occupied in the N-clectron state plus the
ith level.

1 For a typical level, changing N by one alters the probability of occupation by order | N. See
Problem 4.
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makes it possible to solve for f;¥:

1
M= E T ] (2.48)
In subsequent formulas we shall drop the explicit reference to the N dependence
of f;, which is, in any event, carried through the chemical potential y; see (2.45). The
value of N can always be computed, given the f;, by noting that f; is the mean number
of electrons in the one-electron level?? i. Since the total number of electrons N is
just the sum over all levels of the mean number in each level,

1
N=Yfi=Y mmmmer 5 (2.49)

which determines N as a function of the temperature T'and chemical potential p. In
many applications, however, it is the temperature and N (or rather the density,
n = N/V¥) that are given. In such cases (2.49) is used to determine the chemical
potential y as a function of n and T, permitting it to be eliminated from subsequent
formulas in favor of the temperature and density. However the chemical potential
is of considerable thermodynamic interest in its own right. Some of its important
properties are summarized in Appendix B.?!

THERMAL PROPERTIES OF THE FREE ELECTRON GAS:
APPLICATIONS OF THE FERMI-DIRAC DISTRIBUTION

In a gas of free and independent electrons the one-electron levels are specified by
the wave vector k and spin quantum number s, with energies that are independent
of s (in the absence of a magnetic field) and given by Eq. (2.7); ie,

h2k?
We first verify that the distribution function (2.49) is consistent with the ground-state
(T = 0) properties derived above. In the ground state those and only those levels are

occupied with &(k) < &, so the ground-state distribution function must be

fiu=1, &(K) < &f;

— 0, &(k)> & @a-=i)

20 Proof: A level can contain either 0 or 1 electron (more than one being prohibited by the exclusion
principle). The mean number of electrons is therefore 1 times the probability of 1 electron plus 0 times the
probability of 0 electrons. Thus the mean number of electrons in the level is numerically equal to the
probability of its being occupied. Note that this would not be so if multiple occupation of levels were
permitted.

21 The chemical potential plays a more fundamental role when the distribution (2.48) is derived in
the grand canonical ensemble. See, for example, F. Reif, Statistical and Thermal Physics, McGraw-Hill,
New York, 1965, p. 350. Our somewhat unorthodox derivation, which can also be found in Reif, uses only
the canonical ensemble.
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On the other hand, as T — 0. the limiting form of the Fermi-Dirac distribution
(2.48) is
hm f,.=1, &k) < u;

Lonly =0, &k)>pu @32
For these to be consistent it is necessary that
lim g = &¢. (2.53)

T-0

We shall see shortly that for metals the chemical potential remains equal to the
Fermi energy to a high degree of precision, all the way up to room temperature. As
a result, people frequently fail to make any distinction between the two when dealing
with metals. This, however, can be dangerously misleading. In precise calculations
it is essential to keep track of the extent to which g, the chemical potential, differs
from its zero temperature value. .

The most important single application of Fermi-Dirac statistics is the calculation
of the electronic contribution to the constant-volume specific heat of a metal,

T (&S ¢u v
e ISR CEY o o B 2.
. V(ET)., (ET)V "y @39

In the independent electron approximation the internal energy U is just the sum
over one-electron levels of &(k) times the mean number of electrons in the level?2:

U = 2) sk)f(&(K)). (2.55)
k
We have introduced the Fermi funcrion f(&) to emphasize that f, depends on k only
through the electronic energy &(k):
I 1
L fE€) = FREET 1 T (2.56)

If we divide both sides of (2.55) by the volume V, then (2.29) permits us to write the
energy density u = U/V as

U = j% e(k)f (E(K)). @.57)

Ifwe also divide both sides of (2.49) by ¥, then we can supplement (2.57) by an equation
for the electronic density n = N/V, and use it to eliminate the chemical potential:

dk
n= J‘ﬁf €(K))- (2.58)
In evaluating integrals like (2.57) and (2.58) of the form
dk
= F(E(k)), (2.59)

22 As usual, the factor of 2 reflects the fact that each k-level can contain two electrons of opposite
spin orientations.
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one often exploits the fact that the integrand depends on k only through the electronic
energy & = h2k?/2m, by evaluating the integral in spherical coordinates and changing
variables from k to &:

dk @ k2 dk ®
JF F(e() = f T FEK) = J deg(e)F (&), (2.60)
n (i} m -
Here o
2mé
9(8)=%\[%-. &> 0;
=1, &€ <0 (2.61)

Since the integral (2.59) is an evaluation of (1/V) ) F(§(k)), the form in (2.60)
shows that
g(e) de = (%) x [the number of one-electron
levels in the energy range
from & to & + d§). (2.62)

For this reason g(€) is known as the density of levels per unit volume (or often simply
as the density of levels). A dimensionally more transparent way of writing g is

=0, & <0, (2.63)

where & and kg are defined by the zero-temperature equations (2.21) and (2.25). A
quantity of particular numerical importance is the density of levels at the Fermi
energy, which (2.61) and (2.63) give in either of the two equivalent forms:

ke
g(er) = thf;:_z (2.64)
or _|
3n
g(&f) = 28, (2.65)

Using this notation, we rewrite (2.57) and (2.58) as:

u = J‘I . de g(€)sf(€) (2.66)

and

n= j deg(e)f(€). (2.67)
We do this both for notational simplicity and because in this form the free electron
approximation enters only through the particular evaluation (2.61) or (2.63) of the
density of levels g. We can define a density of levels, via (2.62), in terms of which (2.66)



Thermal Properties of the Free Electron Gas 45

Figure 2.3

The Fermi function, f(g) =
1/[¢#€* + 1] versus & for
given u, at (@) T=0 and
(b) T = 0.01u (of order room
temperature, at typical me-
tallic densities). The two
curves differ only in a region
of order kT about pu.

and (2.67) remain valid for any set of noninteracting (that is, independent) electrons.??
Thus we shall later be able to apply results deduced from (2.66) and (2.67) to con-
siderably more sophisticated models of independent electrons in metals.

In general, the integrals (2.66) and (2.67) have a rather complex structure. There
is, however, a simple systematic expansion that exploits the fact that at almost all
temperatures of interest in metals, 7 is very much smaller than the Fermi tempera-
ture (2.33). In Figure 2.3 the Fermi function f(€) is plotted at T = 0 and at room
temperature for typical metallic densities (kg 7/ = 0.01). Evidently f differs from its
zero temperature form only in a small region about g of width a few k7. Thus
the way in which integrals of the form [ H(E)f(€) d€ differ from their zero tem-
perature values, [, H(g) d¢, will be entirely determined by the form of H(g) near
& = . If H(€) does not vary rapidly in the energy range of the order of kgT about p,
the temperature dependence of the integral should be given quite accurately by
replacing H(€) by the first few terms in its Taylor expansion about & = yu:

v & L (&—wr

H(E) = g; ﬁH(f:) o

: (2.68)
This procedure is carried out in Appendix C. The result is a series of the form:
o i 2n—1
I H(e)f(g) de = j
oo

had d
H©) de + Y. (koT)"to gy HE) | (269)

which is known as the Sommerfeld expansion.?* The-a, are dimensionless constants
of the order of unity. The functions H one typically encounters have major variations
on an energy scale of the order of y, and generally (d/d€)" H(g)|,-,, is of the order of
H(p)/p". When this is the case, successive terms in the Sommerfeld expansion are

23 See Chapter 8.

24 The expansion is not always exact, but is highly reliable unless H(E) has a singularity very close to
& = p. If, for example, H is singular at & = 0 (as is the free electron density of levels (2.63)) then the expan-
sion will neglect terms of the order of exp (— p/ksT), which are typically of order e ~ 10~*. See also
Problem 1.
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smaller by O(kgT/u)* which is O(10™%) at room temperature. Consequently, in
actual calculations only the first and (very occasionally) the second terms are retained
in the sum in (2.69). The explicit form for these is (Appendix C):

r H(e) /(&) d& '

'u 2 6
= [ HEdE + T (i TRH ) + o (g TYH ) + O (-’-‘3‘1) | em
u

- o

To evaluate the specific heat of a metal at temperatures small compared with T
we apply the Sommerfeld expansion (2.70) to the electronic energy and number
densities (Egs. (2.66) and (2.67)):

Bt 2

u= j £g(6)de + % (ks T)[pg'(1) + g(p)] + O(T*), @2.71)
[v]
o ‘.ITZ

n= j ge)de + E-kaleg'{#) + O(T*). 2.72)
0

Equation (2.72) as we shall presently see in detail, implies that u differs fromits T = 0
value, &, by terms of order T2. Thus, correctly to order T2, we may write

J: H(e) de = J;F H(E)ds + (1 — Ep)H(ES). 2.73)

If we apply this expansion to the integrals in (2.71) and (2.72), and replace p by &
in the terms already of order 72 in these equations, we find

L 2
u= rﬁg{s}dﬁ + Sr{(u — &r)glEe) + %—(kaﬂzg’(er)}

[¢]

2
¥ %(kng(sf) + O(T%), (2.74)

F 2
n= J; g(€) dé + {(u — &)g(Er) + %(ksﬂzg'(ﬂr)}- 2.75)

The temperature-independent first terms on the right sides of (2.74) and (2.75) are
just the values of 1 and n in the ground state. Since we are calculating the specific
heat at constant density, n is independent of temperature, and (2.75) reduces to

HZ
0= (u — &p)glEp) + 3 (ksT)g'(&¢), (2.76)
which determines the deviation of the chemical potential from & :

g€

=8 _ﬁ(knz
E=Sr=gonl oy

2.77)
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Since for free electrons g(€) varies as £'/2 (see Eq. (2.63)), this gives

1 (nkyT\?
p= & [l = 3(;:227) ] 2.78)
F

which is, as we asserted above, a shift of the order of T2 and typically only about
0.01 percent, even at room temperature.

Equation (2.76) sets the term in braces in (2.74) equal to zero, thereby simplifying
the form of the thermal energy density at constant electronic density:

2
U= g+ %(kBT)ZQ{Sr) @.79)

where 1y is the energy density in the ground state. The specific heat of the electron
gas is therefore

(: 2
Cy = (ﬁ%)" - % kBZTQ{gr] (2.80)

or, for free electrons (see (2.65) ),

‘n? (k
G = T(E‘,L:) nkg. (2.81)

Comparing this with the classical result for an ideal gas, ¢, = 3nkg/2, we see that the
effect of Fermi-Dirac statistics is to depress the specific heat by a factor of (n%/3)
(kg T/€f), which is proportional to the temperature, and even at room temperature is
only of order 10”2 This explains the absence of any observable contribution of the
electronic degrees of freedom to the specific heat of a metal at room temperature.

If one is willing to dispense with the precise numerical coefficient, one can under-
stand this behavior of the specific heat quite simply from the temperature dependence
of the Fermi function itself. The increase in energy of the electrons when the tem-
perature is raised from T = 0 comes about entirely because some electrons with
energies within O(kzT) below &g (the darkly shaded region of Figure 2.4) have been
excited to an energy range of O(kgT) above & (the lightly shaded region of Figure 2.4).
The number of electrons per unit volume that have been so excited is the width, kgT,
of the energy interval times the density of levels per unit volume g(&g). Furthermore,
the excitation energy is of order kg7, and hence the total thermal energy density is
of order g(&¢)(kgT)* above the ground-state energy. This misses the precise result
(2.79) by a factor of n?/6, but it gives a simple physical picture, and is useful for rough
estimates.

Figure 2.4 f
The Fermi function at nonzero 7. The 1.0
distribution differs from its T = 0 form
because some electrons just below &5 (darkly \
shaded region) have been excited to levels —
just above & (lightly shaded region). (A& =kgT)

[
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The prediction of a linear specific heat is one of the most important consequences
of Fermi-Dirac statistics, and provides a further simple test of the electron gas theory
of a metal, provided one can be sure that degrees of freedom other than the electronic
ones do not make comparable or even bigger contributions. As it happens, the ionic
degrees of freedom completely dominate the specific heat at high temperatures. How-
ever, well below room temperature their contribution falls off as the cube of the

Table 2.3

SOME ROUGH EXPERIMENTAL VALUES FOR THE COEFFICIENT
OF THE LINEAR TERM IN T OF THE MOLAR SPECIFIC HEATS
OF METALS, AND THE VALUES GIVEN BY SIMPLE FREE

ELECTRON THEORY
FREE ELECTRON Y MEASURED ¥ RATIO®
EEEMEE (in 1074 cal-mole~*-K~2) (m*[m)

Li 1.8 42 23
Na 26 35 13
K 4.0 4.7 12
Rb 4.6 58 1.3
Cs 53 1.7 LS
Cu 1.2 1.6 1.3
Ag 1.5 1.6 11
Au L5 1.6 1.1
Be 1.2 0.5 042
Mg 24 32 13
Ca 36 6.5 1.8
Sr 43 8.7 20
Ba 4.7 6.5 1.4
Nb 1.6 20 12
Fe 1.5 12 80
Mn 1.5 40 27
Zn 1.8 1.4 0.78
Cd 23 1.7 0.74
Hg 24 5.0 21
Al 22 3.0 14
Ga 24 1.5 0.62
In 219 43 1:5
Tl 3.1 35 1.1
Sn 33 44 1.3
Pb 3.6 7.0 19
Bi 4.3 0.2 0.047
Sb 39 1.5 0.38

2 Since the theoretical value of y is proportional to the density of levels at
the Fermi level, which in turn is proportional to the electronic mass m, one
sometimes defines a specific heat effective mass m* so that m*/m is the ratio
of the measured y to the free electron y. Beware of identifying this specific heat
effective mass with any of the many other effective masses used in solid-state
theory. (See, for example, the index entries under “effective mass.”)
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temperature (Chapter 23), and at very low temperatures it drops below the electronic
contribution, which only decreases linearly with T. In order to separate out these two
contributions it has become the practice to plot ¢,/T against T7, for if the electronic
and ionic contributions together result in the low-temperature form,

¢, = yT+ AT?, (2.82)
then
C,
L T2, 2.
=1+ A (2.83)

One can thus find y by extrapolating the c,/T curve linearly down to 72 = 0, and
noting where it intercepts the ¢,/T-axis. Measured metallic specific heats typically
contain a linear term that becomes comparable to the cubic one at a few degrees
Kelvin.2*

Specific heat data are usually quoted in joules (or calories) per mole per degree
Kelvin. Since a mole of free electron metal contains ZN , conduction electrons (where
Z isthe valence and N , is Avogadro’s number) and occupies a volume ZN 4/n, we must
multiply the heat capacity per unit volume, ¢, by ZN ,/n, in order to get the heat
capacity per mole, C:

o =™ g kaToEn

3 n 2849

where R = kgN, = 8.314 joules/mole = 1.99 calories/mole-K. Using the free elec-
tron density of levels (2.65) and the evaluation (2.33) of €r/kg, we find a free
electron contribution to the heat capacity per mole of C = yT, where

2
y= 1:»rzRE- = 0.169Z (r_,) x 10~% cal-mole™ '-K ™2, (2.85)
2 T‘; g

Some rough, measured values of y are displayed in Table 2.3, together with the free
electron values implied by (2.85) and the values of r,/a, in Table 1.1. Note that the
alkali metals continue to be reasonably well described by free electron theory, as do
the noble metals (Cu, Ag, Au). Note also, however, the striking disparities in Fe and
Mn (experiment of the order of 10 times theory) as well as those in Bi and Sb (experi-
ment of the order of 0.1 times theory). These large deviations are now qualitatively
understood on fairly general grounds, and we shall return to them in Chapter 15.

THE SOMMERFELD THEORY OF CONDUCTION IN METALS

To find the velocity distribution for electrons in metals, consider a small*® volume

element of k-space about a point k, of volume dk. Allowing for the twofold spin

23 Since constant density is hard to arrange experimentally, one generally measures the specific heat
at constant pressure, ¢,. However, one can show (Problem 2} that for the metallic free electron gas at room
temperature and below, ¢,/c. = 1 + O(ksT/Ef). Thus at temperatures where the electronic contribution
to the specific heat becomes observable (a few degrees Kelvin) the two specific heats differ by a negligible
amount.

26 Small enough that the Fermi function and other functions of physical interest vary negligibly
throughout the volume element, but large enough that it contains very many one-electron levels.
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degeneracy, the number of one-electron levels in this volume element is (see (2.18))

1%
(355) dk. (2.86)

The probability of each level being occupied is just f(&(k)), and therefore the total
number of electrons in the k-space volume element is
14 h2k?
s JEW) dk, e = 3';—. @.87)
Since the velocity of a free electron with wave vector k is v = #k/m (Eq. (2.12)),
the number of electrons in an element of volume dv about v is the same as the number
in an element of volume dk = (m/h)* dv about k = mv/h. Consequently the total
number of electrons per unit volume of real space in a velocity space element of volume
dv about vis
Sy av, (2.88)
where
(m/h)? 1

)=y

4n® exp [(3me? — WikeT] + 1 &89

Sommerfeld reexamined the Drude model, replacing the classical Maxwell-Boltz-
mann velocity distribution (2.1} by the Fermi-Dirac distribution (2.89). Using a
velocity distribution constructed from quantum-mechanical arguments in an other-
wise classical theory requires some justification.?” One can describe the motion of an
electron classically if one can specify its position and momentum as accurately as
necessary, without violating the uncertainty principle.?® i

A typical electron in a metal has a momentum of the order of fik, so the uncertainty
in its momentum, Ap, must be small compared with fik; for a good classical descrip-
tion. Since, from (2.22), kg ~ 1/r,, the uncertainty in position must satisfy

Axwﬁ»i-urs, (2.90)
Ap kg

where, from (1.2), r, is of the order of the mean interelectronic distance—i.e., ang-
stroms. Thus a classical description is impossible if one has to consider electrons
localized to within atomic distances (also of the order of angstroms). However, the
conduction electrons in a metal are not bound to particular ions, but can wander
freely through the volume of the metal. In a macroscopic specimen, for most purposes
there is no need to specify their position to an accuracy of 10 cm. The Drude model
assumes a knowledge of the position of an electron primarily in only the two following
contexts:

#7 A detailed analytical justification is fairly complicated to construct, just as it is a fairly subtle

matter 10 specify with generality and precision when the quantum theory can be replaced by its classical
limit. The underlying physics, however, is straightforward.

8 There is also a somewhat more specialized limitation on the use of classical mechanics 1n describing
conduction electrons. The energy of motion of an electron in the plane perpendicular to a uniform applied
magnetic field is quantized in multiples of iy, (Chapter 14). Even for fields as large as 10° gauss, this is a
very small energy, but in suitably prepared samples at temperatures of a few degrees Kelvin, these quantum
effects become observable, and are, in fact, of great practical importance.
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1. When spatially varying electromagnetic fields or temperature gradients are ap-
plied, one must be able to specify the position of an electron on a scale small
compared with the distance £ over which the fields or temperature gradients vary.
For most applications the applied fields or temperature gradients do not vary
appreciably on the scale of angstroms, and the necessary precision of definition
in the electron’s position need not lead to an unacceptably large uncertainty in
its momentum. For cxample, the electric field associated with visible light varies
appreciably only over a distance of order 10° A. If, however, the wave length is
very much shorter than this (for example, X rays), one must use quantum me-
chanics to describe the electronic motion induced by the field.

2. There is also an implicit assumption in the Drude model that one can localize an
electron to within substantially less than a mean free path £, and one should
therefore be suspicious of classical arguments when mean free paths much shorter
than tens of angstroms occur. Fortunately, as we shall see below, mean free paths
in metals are of the order of 100 A at room temperature, and become longer still
as the temperature drops.

There is thus a wide range of phenomena in which the behavior of a metallic
electron is well described by classical mechanics. It is not, however, immediately
evident from this that the behavior of N such electrons can be described by classical
mechanics. Since the Pauli exclusion principle so profoundly affects the statistics of
N electrons, why should it not have similarly drastic effects on their dynamics? That
it does not follows from an elementary theorem, which we state without proof, since
the proof, though simple, is notationally rather cambersome:

Consider a system of N electrons whose interactions with one another are ignored,
and which are exposed to an arbitrary space- and time-dependent electromagnetic
field. Let the N-clectron state at time 0 be formed by occupying a particular group of
N one-electron levels, y,(0), ..., ¥x(0). Let y/;(t) be the level y;(0) would evolve into
in time ¢ under the influence of the electromagnetic field if there were only a single
electron present, which was in the level i;(0) at time zero. Then the correct N-electron
state at time ¢ will be the one formed by occupying the set of N one-electron levels
Vi), ., Yalt).

Thus the dynamical behavior of N noninteracting electrons is completely deter-
mined by considering N independent one-electron problems. In particular, if the
classical approximation is valid for each of these one-electron problems, it will also
be valid for the whole N-electron system.??

The use of Fermi-Dirac statistics affects only those predictions of the Drude model
that require some knowledge of the electronic velocity distribution for their evalua-
tion. If the rate 1/7 at which an electron experiences collisions does not depend on its
energy, then only our estimate of the electronic mean free path and our calculation of
the thermal conductivity and thermopower are at all affected by a change in the
equilibrium distribution function.

2 Note that this implies that any classical configuration consistent with the exclusion principle at
timet = 0 (ie, having less than one electron of each spin per unit volume, in any momentum space region
of volume dp = (2rh)*/V) will remain consistent with the exclusion principle at all future times. This result
can also be proved by purely classical reasoning as a direct corollary of Liouville’s theorem. See Chapter 12.
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Mean Free Path Using v (Eq. (2.24)) as a measure of the typical electronic speed,
we can evaluate the mean free path £ = vt from Eq. (1.8) as follows:

L= (rs/ao)* x 92 A. 2.91)

H

Since the resistivity in microhm centimeters, p,, is typically 1 to 100 at room tem-
perature, and since r,/a,, is typically 2 to 6, mean free paths of order a hundred
angstroms long are possible even at room temperature.*®

Thermal Conductivity We continue to estimate the thermal conductivity by Eq.(1.51):
x = $vtc,. (2.92)

The correct specific heat (2.81) is smaller than the classical guess of Drude by a factor
of order kpT/&p; the correct estimate of v? is not the classical thermal mean square
velocity of order kgT/m, but v = 28¢/m, which is larger than the classical value by
a factor of order &g/kgT. Inserting these values in (2.92) and eliminating the relaxation
time in favor of the conductivity through (1.6), we find

k7 (ke _ 544 % 107® watt ohm/K? 2.93)
oT 3\e) 7 ’

This is remarkably close to Drude’s fortuitously good value, thanks to the two

compensating corrections of order kgT/&p, and in excellent agreement with the data

in Table 1.6. We shall see (Chapter 13) that this value of the Lorenz number is a far

better one than the very rough derivation of (2.93) would suggest.

Thermopower Drude’s overestimate of the thermopower is also resolved by the use
of Fermi-Dirac statistics. Substituting the specific heat, from Eq. (2.81), into Eq. (1.59)
we find

2 'y k

0= AE_E‘—’("”—) = —142 (”—T) x 107% volt/K, (2.94)

6 e Er EF
which is smaller than Drude’s estimate (Eq. (1.60)) by O(kgT/&F) ~ 0.01 at room
temperature.

Other Properties Since the form of the electronic velocity distribution did not play
a role in the calculation of the DC or AC conductivities, the Hall coefficient, or the
magnetoresistance, the estimates given in Chapter 1 remain the same whether one
uses Maxwell-Boltzmann or Fermi-Dirac statistics.

This is not the case, however, if one uses an energy-dependent relaxation time. If,
for example, one thought the electrons collided with fixed scattering centers, then it
would be natural to take an energy-independent mean free path, and hence a relaxa-
tion time 7 = {/v ~ £/&!/2. Shortly after Drude set forth the electron gas model of a

30 Jtis perhaps just as well that Drude estimated using the very much lower classical thermal velocity,
or he might have been sufficiently baffled by such long mean free paths to abandon further investigation.
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metal, H. A. Lorentz showed, using the classical Maxwell-Boltzmann velocity dis-
tribution, that an energy-dependent relaxation time would lead to temperature depen-
dence in the DC and AC conductivities, as well as to a nonvanishing magnetoresis-
tance and a field- and temperature-dependent Hall coefficient. As one might now
expect from the inappropriateness of the classical velocity distribution, none of these
corrections were in any way able to bring the discrepancies of the Drude model into
better alignment with the observed facts about metals.®! Furthermore, we shall see
(Chapter 13) that when the correct Fermi-Dirac velocity distribution is used, adding
an energy dependence to the relaxation time has little significant effect on most of
the quantities of interest in a metal.? If one calculates the DC or AC conductivities,
the magnetoresistance, or the Hall coefficient assuming an energy-dependent t(8), the
results one finds are the same as those one would have calculated assuming an energy-
independent 7, equal to 7(&f). In metals these quantities are determined almost entirely
by the way in which electrons near the Fermi level are scattered.®* This is another
very important consequence of the Pauli exclusion principle, the justification of which
will be given in Chapter 13.

PROBLEMS

1. The Free and Independent Electron Gas in Two Dimensions

(a) What is the relation between n and kg in two dimensions?

(b) What is the relation between ky and r, in two dimensions?

(c) Prove that in two dimensions the free electron density of levels g(€) 1s a constant indepen-
dent of & for & > 0, and 0 for & < 0. What is the constant?

(d) Show that because g(£) is constant, every term in the Sommerfeld expansion for n vanishes
except the T = 0 term. Deduce that i = & at any temperature.

(e) Deduce from (2.67) that when g(€) is as in (c), then

p+ ksTIn(l 4 e #*8T) = & (2.95)

(f) Estimate from (2.95) the amount by which y differs from &;. Comment on the numerical
significance of this “failure” of the Sommerfeld expansion, and on the mathematical reason for
the “failure.”

2. Thermodynamics of the Free and Independent Electron Gas
(a) Deduce from the thermodynamic identities

3 The Lorentz model is, however, of considerable importance in the descniption of semiconductors
(Chapter 29).

32 The thermopower is a notable exception.

33 These assertions are correct to leading order in kg T/E, but in metals this is always a good expansion
parameter,
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from Egs. (2.56) and (2.57), and from the third law of thermodynamics (s — 0 as T— 0) that the
entropy density, s = S/V is given by:

s = —k fg [flnf+ (1 - NHin( =N, @97

where f(&(k)) is the Fermi function (Eq. (2.56)).
(b) Since the pressure P satisfies Eq. (B.5)in Appendix B, P = —(u — Ts — un), deduce from

(2.97) that
dk (h*k?/2m) — p
- il = 1. 2.98
P RBTJ‘4rr’ ln(l + expl: kT ( )

Show that (2.98) implies that P is a homogeneous function of g and Tof degree 5/2; that is,
P(ip, AT) = 152P(u, T) (2.99)

for any constant 1.
(c) Deduce from the thermodynamic relations in Appendix B that

&P eP
= . =) == 2.100
@) (&) o

(d) By differentiating (2.99) with respect to 2 show that the ground-state relation (2.34) holds
at any temperature, in the form
P = %u, (2.101)

(e) Show that when kgT <« &, the ratio of the constant-pressure to constant-volume specific

heats satisfies
()52 o)
Cy 3 Ep &

(f) Show, by retaining further terms in the Sommerfeld expansions of u and n, that correct
to order 7 the electronic heat capacity is given by

n?
€ = ?ksz'fg[ﬁp)

n* a3 g'(Er) 2 g"(&F)
- %ks T g(S;}I:IS(g(SF]) - 21 Q(E}'}]. (2.102)

3. The Classical Limit of Fermi-Dirac Statistics
The Fermi-Dirac distribution reduces to the Maxwell-Boltzmann distribution, provided that the
Fermi function (2.56) is much less than unity for every positive &, for in that case we must have

f(€) ~ e~ (E-n)ikgT (2.103)
The necessary and sufficient condition for (2.103) to hold for all positive & is
e HkBT » 1, (2.104)
(a) Assuming thart (2.104) holds, show that
re = e #3kBT 3186kl T) ™ 12, (2.105)
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In conjunction with (2.104) this requires that

B2 \12
———— 2.106
Ta® (ZmRBT) ’ ( )

which can also be taken as the condition for the validity of classical statistics.
(b) What is the significance of the length r, must exceed?
(c) Show that (2.106) leads to the numerical condition

5 1/2
s » (ﬂfﬁ) _ (2.107)

Qg

(d) Show that the normalization constant m*/4rn*h* appearing in the Fermi-Dirac velocity dis-
tribution (2.2) can also be written as (3</7/n(m/2nks Te)*? so that f5(0)/ f(0) = (4/3/m)(T¢/T)*2

4. Insensitivity of the Distribution Function to Small Changes in the Total Number
of Electrons
In deriving the Fermi distribution (page 41) we argued that the probability of a given level being
occupied should not change appreciably when the total number of electrons is changed by one.
Verify that the Fermi function (2.56) is compatible with this assumption as follows:

(a) Show, when kgT « &, that when the number of electrons changes by one at fixed tem-
perature, the chemical potential changes by

1

[ 108
Ve’ s

Ap

where g{8) is the density of levels.
(b) Show, as a consequence of this, that the most the probability of any level being occupied
can change by is
1 & 1
Af = ———. 2.1
/ 6 kgTN (P09)
[Use the free electron evaluation (2.65) of g(€;).] Although temperatures of millidegrees Kelvin

can be reached, at which &/kT =~ 108, when N is of order 10%? then Af is still negligibly small.
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Free electron theory successfully accounts for a wide range of metallic properties. In
the form originally put forth by Drude the most striking deficiencies of the model
were due to the use of classical statistical mechanics in describing the conduction
electrons. As a result, predicted thermoelectric fields and heat capacities were hun-
dreds of times too large, even at room temperature. The difficulty was obscured by
the fact that classical statistics fortuitously gave a form for the Wiedemann-Franz
law that was not in such gross error. Sommerfeld’s application of Fermi-Dirac sta-
tistics to the conduction electrons eliminated this class of difficulties while retaining
all of the other basic assumptions of the free electron model.

However, the Sommerfeld free electron model still makes many quantitative pre-
dictions that are quite unambiguously contradicted by observation, and leaves many
fundamental questions of principle unresolved. We list below those inadequacies of
the free electron model that have emerged from the applications made in the preceding
two chapters.’

DIFFICULTIES WITH THE FREE ELECTRON MODEL

1. Inadequacies in the Free Electron Transport Coefficients

(a) The Hall Coefficient Free electron theory predicts a Hall coefficient which
at metallic densities of electrons has the constant value R;; = —1/nec, inde-
pendent of the temperature, the relaxation time, or the strength of the mag-
netic field. Although observed Hall coefficients have this order of magnitude,
generally speaking they depend on both the magnetic field strength and the
temperature (and presumably on the relaxation time, which is rather harder
to control experimentally). Often this dependence is quite dramatic. In alumi-
num, for example, Ry (see Figure 1.4) never gets within a factor of three of
the free electron value, depends strongly on the strength of the field, and at
high fields does not even have the sign predicted by free electron theory.
Such cases are not atypical. Only the Hall coefficients of the alkali metals
come even close to behaving in accordance with the predictions of free elec-
tron theory.

(b) The Magnetoresistance Free electron theory predicts that the resistance of
a wire perpendicular to a uniform magnetic field should not depend on the
strength of the field. In almost all cases it does. In some cases (notably the
noble metals, copper, silver, and gold) it can be made to increase apparently
without limit as the field increases. In most metals the behavior of the resis-
tance in a field depends quite drastically on the manner in which the metallic
specimen is prepared and, for suitable specimens, on the orientation of the
specimen with respect to the field.

! These examples and the remarks making up the rest of this brief chapter are not intended 1o give

a detailed picture of the limitations of the free electron model. That will emerge in the chapters that follow,
together with the solutions to the difficulties posed by the model. Our purpose in this chapter is only to
emphasize how varied and extensive the shortcomings are, thereby indicating why one must resort to a
considerably more elaborate analysis.
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(c) The Thermoelectric Field The sign of the thermoelectric field, like the sign
of the Hall constant, is not always what free electron theory predicts it should
be. Only the order of magnitude is right.

(d) The Wiedemann-Franz Law That great triumph of free electron theory, the
Wiedemann-Franz law, is obeyed beautifully at high (room) temperatures
and also quite probably at very low (a few degrees K) temperatures. At inter-
mediate temperatures it fails, and k/oT depends on the temperature.

(e) Temperature Dependence of the DC Electrical Conductivity Nothing in free
electron theory can account for the temperature dependence of the DC con-
ductivity (revealed, for example, in Table 1.2). It has to be mechanically
inserted into the theory as an ad hoc temperature dependence in the relaxa-
tion time 7.

(f) Directional Dependence of the DC Electrical Conductivity In some (but by
no means all) metals the DC conductivity depends on the orientation of the
specimen (if suitably prepared) with respect to the field. In such specimens the
current j need not even be parallel to the field.

(g) AC Conductivity There is a far more subtle frequency dependence 1o the
optical properties of metals than the simple {ree electron dielectric constant
can hope to produce. Even sodium, in other respects a fairly good free electron
metal, appears to fail this test in the detailed frequency dependence of its
reflectivity. In other metals the situation is far worse. We cannot begin to
explain the colors of copper and gold in terms of reflectivities calculated from
the free electron dielectric constant,

2. Inadequacies in the Static Thermodynamic Predictions

(a) Linear Term in the Specific Heatr The Sommerfeld thcory accounts reason-
ably well for the size of the term linear in 7 in the low-temperature specific
heat of the alkali metals, rather less well for the noble metals, and very
poorly indeed for transition metals such as iron and manganese (much too
small a prediction) as well as for bismuth and antimony (much too large a
prediction).

(b) Cubic Term in the Specific Heat There is nothing in the free clectron model
to explain why the low-temperature specific heat should be dominated by
the electronic contribution. However, it is evident from experiment that the
T3 correction to the linear term is very definitely dominated by something
else, since the simple Sommerfeld theory for the electronic contribution to the
T3 term has the wrong sign and is millions of times too small.

(c) The Compressibility of Metals Although free electron theory does miracu-
lously well in estimating the bulk moduli (or compressibilities) of many metals,
it is clear that more attention must be paid to the ions and to electron-
electron interactions if one is to achieve a more accurate estimate of the
equation of state of a metal.

3. Fundamental Mysteries

(a) What Determines the Number of Conduction Electrons? We have assumed
the 'l valence electrons become conduction electrons, while the others
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remain bound to the ions. We have given no thought to the question of why
this should be, or how it is to be interpreted in the case of elements, like
iron, that display more than one chemical valence.

(b) Why Are Some Elements Nonmetals? A more acute inadequacy of our rule
of thumb for determining the number of conduction electrons is posed by the
existence of insulators. Why, for example, is boron an insulator while its
vertical neighbor in the periodic table, aluminum, an excellent metal? Why
is carbon an insulator when in the form of diamond and a conductor when
in the form of graphite? Why are bismuth and antimony such very poor
conductors?

REVIEW OF BASIC ASSUMPTIONS

To make further progress with any of these problems we must reexamine the basic
assumptions on which free electron theory rests. The most notable are these:

1. Free Electron Approximation® The metallic ions play a very minor role. In be-
tween collisions they have no effect at all on the motien of an electron, and though
Drude invoked them as a source of collisions, the quantitative information we
have been able to extract about the collision rate has made no sense when inter-
preted in terms of electrons colliding with fixed ions. The only thing the ions
really seem to do properly in the models of Drude and Sommerfeld is to maintain
overall charge neutrality.

2. Independent Electron Approximation® The interactions of the electrons with one
another are ignored.

3. Relaxation-Time Approximation* The outcome of a collision is assumed not to
depend on the configuration of the electrons at the moment of collision.

All these oversimplifications must be abandoned if we are to achieve an accurate
model of a solid. However, a remarkable amount of progress can be made by first
concentrating entirely on improving some aspects of the free electron approximation
while continuing to use the independent electron and relaxation time approximations.
We shall return to a critical examination of these last two approximations in Chapters
16 and 17, limiting ourselves here to the following general observations:

There is a surprisingly wide range of circumstances in which the independent
electron approximation does not drastically diminish the validity of the analysis. In
resolving the problems of free electron theory listed above, improving on the inde-
pendent electron approximation plays a major role only in the calculation of metallic
compressibilities (2¢).>¢ An indication of why we apparently ignore electron-electron
interactions is given in Chapter 17, together with further examples in which electron-
electron interactions do play a direct and crucial role.

See page 4.
See page 4.
See page 6.
Numbers in parentheses refer to numbered paragraphs at the beginning of this chapter.

¢ There are also some cases where a failure of the independent electron approximation (Chapter 10.
p. 186 and Chapter 32) invalidates the simple distinction between metals and insulators that we shall
draw in Chapters § and 12.

P )
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As for the relaxation time approximation, even in Drude’s time there were methods
in kinetic theory for correcting this oversimplification. They lead to a much more
complex analysis and in many cases are primarily important in understanding metallic
phenomena with greater precision. Of the difficulties described previously, only the
problem of the Wiedemann-Franz law at intermediate temperatures (1d) has a resolu-
tion that requires abandoning the relaxation time approximation even at the most
gross qualitative level of explanation.” In Chapter 16 we shall describe the form a
theory must take ifit is to go beyond the relaxation time approximation, together with
further examples of problems requiring such a theory for their resolution,

The free electron approximation is the major source of the difficulties in the theories
of Drude and Sommerfeld. It makes several simplifications:

(i) Theeffect of the ions on the dynamics of an electron between collisions is ignored.
(i) What role the ions play as a source of collisions is left unspecified.
(iii) The possibility that the ions themselves, as independent dynamical entities,
contribute to physical phenomena (such as the specific heat or thermal con-
ductivity) is ignored.

The failures of assumptions (i) and (i) play an essential role in accounting for
deviations from the Wiedemann-Franz law at intermediate temperatures (1d) and the
temperature dependence of the electrical conductivity (1e). The failure of assumption
(iii} accounts for the cubic term in the specific heat (2b). Relaxing these two assump-
tions 13 also essential in accounting for a variety of phenomena yet to be discussed.
Such phenomena are briefly described in Chapter 21, and the consequences of
abandoning assumptions (i1) and (iii) are explored in detail in Chapters 22 to 26.

Itisassumption (i}, that the ions have no significant effect on the motion of electrons
between collisions, that is responsible for most of the deficiencies of the Drude and
Sommerfeld theories described above. The reader may well be perplexed at how one
can distinguish between assumptions (i) and (ii), for it is far from clear that the effect
of the ions on the electrons can be unambiguously resolved into “collisional” and
“noncollisional” aspects. We shall find, however (especially in Chapters 8 and 12),
that a theory that takes into account the detailed field produced by an appropriate
static array of ions but ignores the possibility of ionic motion (the “static ion approxi-
mation”) reduces under a wide range of circumstances to a relatively simple modifica-
tion of the Drude and Sommerfeld free electron theories, in which collisions are
entirely absent! It is only when one allows for ionic motion that their role as a source
of collisions can be properly understood.

We shall therefore relax the free electron approximation in two stages. First we
shall examine the wealth of new structure and the subsequent elucidation that emerges
when the electrons are considered to move not in empty space, but in the presence of a
specified static potential due to a fixed array of stationary ions. Only after that (from
Chapter 21 onward) will we examine the consequences of the dynamical deviations of
the ionic positions from that static array.

The single most important fact about the ions is that they are not distributed at
random, but are arranged in a regular periodic array, or “lattice.” This was first

7 It must also be abandoned to explain the detailed temperature dependence of the DC conductivity
(le).
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suggested by the macroscopic crystalline forms assumed by many solids (including
metals), first directly confirmed by X-ray diffraction experiments (Chapter 6) and
subsequently reconfirmed by neutron diffraction, electron microscopy, and many
other direct measurements.

The existence of a periodic lattice of ions lies at the heart of modern solid state
physics. It provides the basis for the entire analytic framework of the subject, and
without it comparatively little progress would have been made. If there is one
reason why the theory of solids is so much more highly developed than the theory
of liquids, even though both forms of matter have comparable densities, it is that
the ions are arranged periodically in the solid state but are spatially disordered in
liquids. It is the lack of a periodic array of ions that has left the subject of amorphous
solids in so primitive a state compared with the highly developed theory of crystalline
solids.®

To make further progress in the theory of solids, whether metallic or insulating,
we must therefore turn to the subject of periodic arrays. The fundamental properties
of such arrays are developed in Chapters 4, 5, and 7, without regard to particular
physical applications. In Chapter 6 these concepts are applied to an elementary
discussion of X-ray diffraction, which provides a direct demonstration of the period-
icity of solids and is a paradigm for the wide variety of other wave phenomena in
solids we shall subsequently encounter. Chapters 8 to 11 explore the direct con-
sequences of the periodicity of the array of ions on the electronic structure of any solid,
whether insulating or metallic. In Chapters 12 to 15 the resulting theory is used to
reexplore the properties of metals described in Chapters 1 and 2. Many of the anoma-
lies of free electron theory are thereby removed, and its mysteries are in large part
resolved.

8 Although there has been a great burst of interest in amorphous solids (starting in the late 1960s),
the subject has yet to develop any unifying principles of a power even remotely comparable to that provided
by the consequences of a periodic array of ions. Many of the concepts used in the theory of amorphous
solids are borrowed, with little if any justification, from the theory of crystalline solids, even though they
are only well understood as consequences of lattice periodicity. Indeed, the term *‘solid state physics,” if
defined as the subject matter of solid state physics textbooks (including this one) is currently confined
almost entirely to the theory of crystalline solids. This is in large part because the normal condition of
solid matter is crystalline, and also because in its present form the subject of amorphous solids still lacks
the kind of broad basic principles suitable for inclusion in an elementary text.



